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Abstract

Optical Emission Spectroscopy (OES) is an increasingly relevant technique in plasma di-

agnostics due to its inherent non-invasive nature and simple application relative to other

popular techniques. In this work, common OES techniques are combined with novel meth-

ods, developed here, in an effort to provide comprehensive OES techniques for stationary

and supersonic air microwave discharges. To this end, a detailed collisional-radiative model

for strong atomic oxygen lines has been developed and used to identify the importance of

often overlooked mechanisms including cascade emission and metastable excitation. Us-

ing these results, a combined argon actinometry technique was developed which makes use

of the two strong oxygen triplets (777 nm and 844 nm) as well as the common N2/N2+

method in order to make simultaneous experimental estimates of gas temperature, dissoci-

ation fraction, electron temperature and electron density in a medium pressure synthetic air

microwave discharge. Finally, a similar technique is proposed and tested in a supersonic

flowing air microwave discharge which shows promise for rapid spatial imaging of electron

temperature and ionization fraction in high Mach plasma flows.
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SPECTROSCOPIC DIAGNOSTICS FOR SUPERSONIC DISCHARGES

I. Introduction

The challenge of accurate plasma diagnostics along with the diversity and complexity

of modern plasma sources has created a consistent need for a broad toolbox of plasma di-

agnostic techniques [8]. This need, along with the increasing availability of kinetic and

spectroscopic data, has led to a number of novel diagnostic techniques which make use of

the rich optical spectrum of low temperature plasmas [9, 10]. Simultaneously, the avail-

ability of Boltzmann solvers such as BOLSIG [11] and LoKI-B [12], have removed the

often inaccurate requirement of assuming a Maxwellian or otherwise analytic electron en-

ergy distribution function (EEDF). Optical emission spectroscopy (OES) plasma diagnos-

tic techniques are attractive due to their non-invasive nature, potential accuracy, and simple

implementation. OES and similar plasma diagnostics are the fundamental tools used in ex-

perimental plasma physics and allow us to understand, control, and study the physics of our

laboratory plasmas. These techniques provide information regarding the densities, temper-

atures, and energy distributions of charged and neutral particles. In doing so, they enable

us to make advances towards applications in over the horizon radar, blackout mitigation

and sensing for hypersonic vehicles, as well as space superiority.

As an example, vehicles traveling at high Mach numbers begin to ionize and dissociate

the surrounding gases generating a plasma sheath. The plasma sheath can cause the black-

out phenomenon in which the plasma is opaque for RF frequencies important for commu-

nication and telemetry. This problem has received extensive research since the beginning

of the space era, yet still hasn’t seen applied solutions. For nearly all proposed solutions,

it is necessary to measure plasma parameters, primarily the electron density, in order to
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implement the mitigation technique and verify its efficacy [13–16]. Another motivation

for characterization of a high speed vehicle’s sheath relates more directly to vehicle sur-

vivability. The high temperature and chemically kinetic environment requires a great deal

of consideration regarding thermal management [17]. Information regarding the chemical

composition and temperatures of the sheath could indicate whether ablation and degrada-

tion remain at allowable levels. One of the only options for electron diagnostics in this

application is passive OES. In terms of air platform applications, the non-invasive nature

provides a potentially crucial advantage as an OES sensor could remain conformal or even

operate at long stand-off distances. Even though preliminary analysis of spectra can be

complex and require detailed numerical models, often for operational systems the results

can be distilled to a simple relationship between line ratios and a parameter of interest. This

leads to the overall objective of this work: the development a novel and simplified method

of determining plasma parameters in a high-Mach vehicles plasma sheath.

To this end, a detailed of study of existing suitable OES methods has been conducted

and a novel technique has been developed which uses a combination of the commonly used

N2/N+
2 ratio along with the prominent infrared atomic oxygen lines (777 nm and 844 nm)

to produces simultaneous estimates of multiple plasma parameters including dissociation

fraction, electron density, electron density, and gas temperature. This new method makes

use of the strong excitation cross section for metastable excitation of the 3p 5P state [18],

which introduces an apparent electron density dependence on line ratios involving the 777.4

nm atomic oxygen line. Additionally, a bench-top microwave plasma flow is used to test

and explore these techniques in both the case of a subsonic flow and that of a supersonic

flow. In chapter II, the basics of microwave discharges, laboratory supersonic flows, and

OES are discussed along with a wide review of literature relevant to OES diagnostics in

general and those applied to supersonic plasma jets. Chapter III details a relatively com-

plete collisional-radiative model of atomic oxygen developed for this work which is used

10
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to determine the relative importance of excitation mechanisms of O(3p 3P) and O(3p 5P)

states. In chapter IV, a novel actinometry technique is explored in the case of the subsonic

discharge, which makes use of the results in chapter III. Finally, in chapter V, the use

of the previously developed and newly introduced techniques is explored in a supersonic

microwave plasma flow.
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II. Background

2.1 Microwave Discharges

Microwave discharges, or gas discharges driven by microwave frequency (300 MHz

– 300 GHz) electromagnetic waves, are one of the most common methods of driving

laboratory plasmas. They are versatile in application and may offer several advantages

over other plasmas sources: operation at pressures ranging from atmospheric to below 1

mTorr, electrode-less configurations, and operation at wide ranges of power and plasma vol-

ume [19]. Additionally, many examples in literature have shown that microwave discharges

are capable of being sustained in supersonic flows [19–23] at relatively low power when

compared to alternative methods using DC or inductively coupled RF sources. Plasmas can

be generated using microwave sources in a variety of ways. Some common applications

include electron cyclotron resonance sources (ECR), surface wave discharges, cavity mi-

crowave discharges, and waveguide microwave discharges. For this work, the focus will

be the simple application of a waveguide microwave discharge, in which a discharge tube

is passed through a rectangular microwave waveguide and plasma is excited by standing

microwave modes [24]. For the waveguide and antenna used in this work, a rectangular

WR-340 (43 × 86 mm) type waveguide, the fundamental mode is the transverse electric

(m,n = 1,0) or TE10 mode [25]. The transverse electric mode satisfies the condition that

Ez = 0, where z is the longitudinal dimension of the waveguide and the dominant direction

of the wave vector (k). The electric field is then only in the x and y or transverse directions

in the waveguide. For the 10 mode, where the first index is by convention the larger of the

two dimensions, the electric field oscillates primarily along the short side of the waveguide

and is sinusoidal in magnitude along z. This mode is shown in figure 1 below within the di-

mensions of the WR-340 waveguide for 2.54 GHz microwave operating at 6 kW waveguide

power.
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Figure 1. Electric field spatial distribution for the TE10 mode and a microwave power of 6 kW

For waveguide microwave discharges, it is standard practice to position the dielectric

discharge tube through the shortest transverse dimension at λ /4 from the terminating end

of the waveguide. From figure 1, the reason for this becomes obvious, as this configura-

tion would place the discharge tube in the maxima of electric field amplitude with the field

pointing along the length of the tube. Microwave discharges, not unlike other wave heated

type discharges, are generated when the electric field is sufficiently strong to produce a

cascade of ionization. For the case of air (N2 and O2), with ionization energies of approx-

imately 15.581 and 12.07 eV, corresponding to ultra-violet (UV) photons near 100 nm in

wavelength ( f > 106 GHz), microwave photons alone will not create any ionization [26].

For this reason, microwave discharges (along with all MW, RF, and DC discharges), require

the presence of seed electrons, though the addition of excited neutrals may aid ignition. If

the electric field from the microwave source is strong enough to accelerate seed electrons

to an energy greater than the neutral ionization energy (electron speeds > 2× 106 m/s at

12.07 eV) before an electron-neutral collision, a cascade ionization can occur, resulting in
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breakdown. The breakdown threshold for the case of continuous or long pulse is given

by [26],

Eb = 3.684 P
(
1 + f 2/ν

2
c
)1/2

kV/m, (1)

where Eb is the electric field threshold necessary for breakdown, P is the pressure in Torr,

f is the microwave frequency, and νc is the electron-neutral collision frequency. For N2,

the electron-neutral momentum transfer collision frequency can be expressed as [27],

νe−N2 = 2.33×10−11nN2

(
1−1.21×10−4Te

)
Te s−1, (2)

where Te is in units of eV and nN2 is in cm−3. If it is assumed that 1.21×10−4 Te << 1,

and write the N2 density as a function of pressure, the approximate collision frequency can

be written as

νe−N2 = 225TeP MHz eV−1 Torr−1. (3)

Using the above collision frequency along with a 2.54 GHz microwave frequency, 1

eV electrons and 1 Torr pressure, the breakdown field can be shown to be approximately

417 V/cm. Also, in the case of atmospheric pressure and νe−N2 >> f it can be seen that

equation 1 approaches the known DC breakdown threshold for air at approximately 2.8

kV/mm [26]. This information is crucial to experimental design, as unwanted waveguide

breakdown can be problematic. Other important factors for breakdown include seed elec-

tron density and microwave pulse length, with breakdown threshold field increasing with

decreasing pulse length [26].

2.2 Electron Energy Distribution Functions

The electron energy distribution function (EEDF), also commonly expressed as an elec-

tron energy probability function (EEPF), gives the fraction of the electron population at all
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possible energies. For this work, accurate knowledge of this distribution function is cru-

cial. This is due to the fact that the production rates of radiative species are often dominated

by direct electron impact excitation (EIE). In fact, optical emission spectroscopy relies in

many cases on the dominance of EIE in order to indirectly probe plasma properties. In

order to determine direct electron excitation rates, the appropriate cross section along with

an estimate of the electron energy distribution function (EEDF) are required. The direct

impact electron excitation rate, k( j)
e , for some transition i→ j can be calculated as

k( j)
e =

〈
σi→ jve

〉
= 100

√
2e/m

∫
∞

Uth

σi→ j(U) fe(U)
√

UdU, (4)

where σi→ j is the direct impact electron excitation cross section for the transition in cm2, ve

is the electron speed, e is the fundamental charge, m is the mass of an electron in kg, fe is

the EEDF in units of eV−1, and U is the energy in eV. The coefficient 100
√

2e/m represents

the speed of an electron at 1 eV in cm/s [28]. fe is often also expressed alternatively in units

of eV−3/2 (EEPF), as is the case of the default BOLSIG+ output, and that in this case the

integral in equation 4 should include an additional
√

U as the EEDF ( fe) is scaled by that

factor relative to the EEPF. The EEDF is the electron solution to the Boltzmann equation

for a given discharge, which along with its moments, form the basis of the kinetic theory.

A general form of the Boltzmann equation, in the context of gaseous discharges, is [11],

δ f
δ t

+ v ·∇ f − e
m

E ·∇v f = C[ f ]. (5)

Here f (r,v, t) is the time dependent 6-dimensional phase space distribution function which

is defined as the function which produces the total number of particles with range ∆3r∆3v

at time t [26], r is the position coordinate, and v is the velocity. Additionally in equation 5,

E is the electric field, e and m are the charge and mass of an electron, and C is a function

that describes time evolution of f due to collisional momentum transfer. C can be seen here
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as a source term. The most commonly assumed solution to equation 5 is the well-known

Maxwellian distribution, for the case of thermal equilibrium [26, 29],

fe (U) = 2

√
U
π

T−3/2
e e−U/Te . (6)

The Maxwellian EEDF is commonly used to describe many types of laboratory plas-

mas, including non-equilibrium plasmas, even when the actual EEDF may be non-Maxwellian.

This is typically because often the actual EEDF is unknown and the Maxwellian is easily

handled and may be a fair approximation for some applications. The value in using an

EEDF such as the Maxwellian is that it may be described by a single parameter, the tem-

perature. The entire idea of an electron temperature, which is used with ubiquity in plasma

physics, relies on the EEDF being Maxwellian. However, as the solution to the two-term

Boltzmann equation relies primarily on the reduced electric field E/N and for any resulting

EEDF corresponding to a specific E/N, an effective electron temperature can be found as

2/3 the mean electron energy. In this case the effective electron temperature can be used

as an intuitive label for the EEDF and associated E/N. For this work, the assumption that

the EEDF is Maxwellian may not be valid, especially for use in equations such as equation

4, where production rates of radiative species are highly sensitive to EEDF shape and the

projection of species dependent cross sections on that shape. Any resulting error in rate

calculations will propagate to spectral line intensities and be compounded in spectra line

ratios. As is shown in later sections, the spectroscopic techniques of interest in this work

rely heavily on those spectral line ratios in order to accurately predict electron density. For

this reason, the example of many similar OES analyses in literature is followed, in which

the EEDF is calculated numerically using BOLSIG+, a Boltzmann solver developed by

Hagelaar and Pitchford [11]. BOLSIG+ is an efficient small program which solves for the

steady state two-term approximation of the Boltzmann equation for electrons in a spatially

uniform electric field [11]. Figure 2 below shows an example of using BOLSIG+ to calcu-
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late the EEDF for the case of an air microwave discharge at medium pressure as compared

with two analytic EEDFs.

0 10 20 30 40 50
Energy (eV)

10 10

10 8
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10 2
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EE
DF

, f
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1 )

BOLSIG
Maxwellian
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Figure 2. Comparison of analytical and numerically (BOLSIG+) calculated EEDFs for a medium
pressure air discharge with Te = 2 eV for each.

The solver accepts tabulated collisional cross sections and therefore can accurately ac-

count for collisional energy transfer for any electron-electron or electron-neutral collisions

as long as accurate cross sections are available. The BOLSIG+ EEDF in the figure above

was calculated using available cross sections for N2 and O2. For comparison with the ana-

lytical functions, which were calculated for an electron temperature of 2 eV, the BOLSIG

EEDF reflects an ’effective’ temperature of (2/3)〈Ue〉 = 2 eV. The Druyvesteyn function

is a distribution function which assumes electron-neutral collisions are elastic or rather

have constant cross sections, an approximation which is reasonable for certain gases at

low energies such as H2 and helium [29]. This approximation results in a similar analytic
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expression to that of the Maxwellian distribution in equation 6 except that the quantity in

the exponential is squared
(

e−(U/Te)2
)

. Some authors will freely vary the exponent of the

(U/Te)
x term from x = 1 to x = 2 in order to fit their experimental EEDFs on a continuous

scale between the Maxwellian and Druyvesteyn solutions [30]. If the BOLSIG+ solution

from initial calculations is accurate, it is indeed the case that our experimental EEDF will

be highly non-Maxwellian and any analytical form will likely induce large error into the

OES intensity predictions. Even with the BOLSIG EEDF solution, an ‘effective’ or aver-

age temperature to describe the overall energy distribution can be used. This temperature

can be shown to be Te f f = (2/3)〈Ue〉, where 〈Ue〉 is the average electron energy [9]. All

electron temperatures reported in the modeling and experimental results of this work refer

to this effective electron temperature.

2.3 Basic Spectroscopic Models for Air Plasmas

One of the most striking features of plasmas is their characteristic glow. This glow is a

result of a complex set of excitation mechanisms and subsequent relaxation by spontaneous

emission. This set of mechanisms and its corresponding emission spectrum varies signif-

icantly depending on plasma conditions. As such, an optical emission spectrum produced

by a bulk plasma contains a wealth of information regarding relative densities and energy

distributions of all radiative species as well as non-radiative species, such as electrons and

metastable states, which often significantly influence the populations of strongly radiative

states. Basic spectroscopic models such as the ones discussed below provide the framework

for the more advanced models used and developed in chapters III and IV. All such models

approximate the relationship between emission intensity and experimental parameters. For

this reason, these models and others enable the estimation of electron temperature, elec-

tron density, neutral densities, dissociation fractions, rotational temperatures, vibrational

distribution functions, as well as other relevant parameters.
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Line Intensities and the Corona Model.

For spontaneous emission from an excited atomic or molecular species to a lower state

(i→ k), the radiated intensity from a volume V and a solid angle Ω is given by

Iik = (V Ω)Aikhνikni, (7)

where Aik is the Einstein A coefficient for the transition, hνik is the energy of the emitted

photon and ni is the number density in the initial or upper state i [31,32]. If the transition is

a multiplet, consisting of multiple J→ J′ transitions, and it may not be possible to resolve

and measure the intensity of each line in the multiplet independently, it is necessary to

calculate the effective multiplet Einstein A coefficient. For multiplet transitions, the total

emitted intensity is

Iik = (V Ω)∑
J

∑
J′

Aik(J,J′)hνik(J,J′)ni,J, (8)

where ni,J is the density of state i in level J (ni = ∑J ni,J). In the case where only the lower

state has spin-orbit splitting and the upper state consists of only one J state, equation 8

simplifies to Iik = (V Ω)∑J′ Aik(J,J′)hνik(J,J′)ni , since the total density in the upper state

is ni,J . If instead the upper state does have spin-orbit splitting, then density of each upper J

state must be calculated. If the states are statistically distributed, the densities are given by

ni,J =
ni (2J + 1)e−Ei,J/kT

q
, (9)

where q is the partition function, k is the Boltzmann constant, T is the temperature and

2J + 1 is the degeneracy of level J, and Ei,J is the energy of the state. Due to the small

energy spacing of the fine structure, it is a fair approximation that Ei,J ≈ Ei, for all J. Thus

the temperature dependence, which is also present in the partition function q cancels. A

similar approximation can be made of hν in equation 8. In this case equation 9 is simply
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ni,J = ni (2J + 1)/q, where q = ∑J (2J + 1) and is equal to the total degeneracy of state

i, gi = (2L + 1)(2S + 1), where L is the coupled orbital angular momentum, and S is the

coupled spin [32]. Thus, the total multiplet emission intensity in equation 8 can be written

as

Iik = (V Ω)hνikni ∑
J

∑
J′

Aik(J,J′)(2J + 1)

gi
, (10)

and the effective multiplet Einstein A coefficient for the transition i→ k can be seen to be

A′ik = ∑
J

∑
J′

Aik(J,J′)(2J + 1)

gi
. (11)

In this way, according to equation 11, effective Einstein A coefficients for multiplet

transitions have been calculated for atomic oxygen transitions important for this work.

These values and other important radiative parameters, along with values for other relevant

species are given in table 1 below.

Table 1. Einstein A coefficients, wavelengths, and upper state radiative lifetimes for optical transitions
relevant to this work. Radiative lifetimes for N2 and N+

2 represent the inverse of the sum of radiative
rates originating from the upper vibrational state rather than the effective lifetime of electronic state
and were taken from Gilmore et al. [1]. Wavelengths for N2 and N+

2 represent the band origin.

Species Transition (i→ k) Aik (s−1) τi(s) λ (nm) Ref.

O 3s 5S◦→ 2p4 3P 5.56e3 1.80e-4 135.7 [33]
O 4d 5D◦→ 3p 5P 7.62e6 7.11e-8 615.7 [33]
O 3p 5P→ 3s 5S◦ 3.69e7 2.71e-8 777.4 [33]
O 3p 3P→ 3s 3S◦ 3.22e7 3.11e-8 844.6 [33]
Ar 4p′ 2 [1/2

]
0→ 4s′ 2 [1/2

]◦
1 4.50e7 2.21e-8 750.4 [33]

N2 N2(C3Πu)v=0→ N2(B3Πg)v=2 8.91e6 3.67e-8 380.4 [1]
N+

2 N+
2 (B2Σ+

u )v=0→ N+
2 (X1Σ+

g )v=0 1.21e7 5.55e-8 391.4 [1]

Optical emission spectroscopy techniques typically use ratios of strong atomic and

molecular lines whose driving mechanisms can be reduced to a few important processes

which are dominantly driven by parameters of interest. In the case of electron tempera-
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ture and electron density diagnostics, it is ideal if electron processes such as direct electron

impact excitation dominate production while optically accessible spontaneous emission

dominates loss. The simplest example of this situation is known as the corona model, in

which population only occurs specifically via direct electron impact excitation from the

ground state. In this case, the steady state density of some excited state j can be written as

n j =
n0nek( j)

e

∑i< j Ai j
, (12)

where n j is the steady state density, n0 is the ground state density, ne is the electron density,

and k( j)
e is the electron excitation rate as calculated by equation 4. Substituting the above

density in the line intensity expression in equation 7, the line intensity in the case of the

corona model can be written as

Iik = (V Ω)
Aikhνikn0nek( j)

e

∑i< j Ai j
, (13)

Where Aik and Ai j are the effective multiplet Einstein A coefficients, A′ik and A′i j, when

appropriate. This basic model, forms the foundation for all of the spectroscopic diagnostic

techniques discussed and developed in chapters III and IV. In the chapters that follow, the

superscript for rates (k j) is in some cases replaced with two indices referring to the lower

and upper states and in other cases the superscript is simply the term symbol for the relevant

upper state while the lower state is assumed to be the ground state, unless otherwise stated.

N2 Rotational-Vibrational Spectra.

The prominent N2(C−B) second positive system (SPS) along with the N+
2 (B−X) first

negative system (FNS) together comprise the vast majority of the near UV spectra for air

discharges. In the case of these and other molecular transitions, application of simple spec-

troscopic models for emission intensity, such as the corona model discussed above, require
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the integration of entire vibrational bands. Extracting accurate intensities in the case of this

work presents two primary difficulties. The first being that the FNS at 391 nm is overlapped

by the ∆v = 3 bands of the SPS. The second difficulty is that SPS v′→ v′′ = 0→ 2 band

is overlapped by the v′→ v′′ = 1→ 3 band of the SPS. To overcome these issues, the full

spectrum is fit ranging from approximately 362 nm to 400 nm using full spectral models of

the FNS and SPS which depend on rotational temperatures and a freely varying vibrational

distribution. Many full descriptions of this and similar models can be found in a number

of publications regarding the popular OES technique of extracting rotational temperatures

from the SPS [34–37]. In short, the model calculates the discrete rotational/vibrational

energy levels using ro-vibrational molecular constants and the relative intensities using

the rotational temperature, a vibrational distribution function, Franck-Condon factors, and

Hönl-London factors. These discrete lines are then convolved with a pseudo-Voigt line

shape function which has been fit to the instrument line shape. The model makes use of a

variety of widely available molecular and radiative data for the SPS and FNS [1, 38, 39].

Alternatively, the band intensities can be approximated by their peak intensities along with

analytic equations given in [40]. One significant benefit of fitting the full spectrum is ob-

taining an estimate of gas temperature, as the rotational temperature of the N2(C3Πu) state

is reasonably approximated to be equal to the gas temperature [34, 35]. This allows for the

use of this measured gas temperature along with operating pressure in order to compute ini-

tial gas densities used in calculating neutral gas densities according to the ideal gas law, as

well as for any gas-kinetic type scaling temperature of collisional quenching rates. Radia-

tive parameters for FNS and SPS transitions relevant to this work are given in table 1 above.

The Einstein A coefficients for vibrational transitions are taken from Gilmore et al. [1] and

are related to the total electronic transition Einstein A coefficient by the appropriate v′→ v′′

Franck-Condon factors.
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2.4 Isentropic flows and Nozzle design

Generation of supersonic laboratory flows are typically accomplished using convergent-

divergent nozzles, for example the de Laval nozzle, along with a sufficient pressure differ-

ential to support the flow. In the case of most gases, the necessary pressure ratio that must

be sustained to reach Mach 1 is near 0.5 [41]. On the convergent side the flow is subsonic

and the pressure drops until it reaches the throat where the Mach number is 1, while in

the divergent section the pressure decreases further and the flow becomes supersonic [41].

In the supersonic portion of the flow downstream of the exit, the gas temperature drops

sharply as the random thermal motion is converted to the higher speed directed flow [42].

The design Mach number of a convergent-divergent nozzle is based on the isentropic flow

relation

A
A∗

=
1
M

[(
2

k + 1

)(
1 +

k−1
2

M2
)] k+1

2(k−1)

, (14)

where A is the downstream area (including any boundary layer), A∗ is the throat area, M

is the Mach number, and k is the ratio of specific heats. A value of k = 1.4 is used for the

calculations here. If the exit velocity is Mach 3.4, for example, equation 14 yields a ratio

of A/A∗ ≈ 6.5. Using a similar isentropic relation, the expected pressure ratio as measured

by pressure transducers experimentally can be expressed as

Pi

P f
=

(
1 +

k−1
2

M2
) k

k−1

, (15)

where Pi and P f are the pressure before and after nozzle, respectively, relative to the flow

direction. In the case of a Mach 3.4 nozzle, the expected pressure ratio is Pi/P f ≈ 71. These

equations will be used as the fundamental tools for the design and testing of the supersonic

flow in chapter V.
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2.5 Previous Work

N2 Optical Emission Spectroscopy.

A primary focus of this work is determination of plasma parameters using the N2(C−

B) second positive system and the N+
2 (B−X) first negative system. Because these systems

are so dominant in air discharge spectra and their relative kinetics have been shown to be

sensitive to plasma parameters, they constitute some of the most promising candidates for

OES diagnostics in air. As such, these systems continue to see increasing attention, par-

ticularly as a means of determining the reduced electric field (E/N) and electron density

of a discharge. There are many examples in recent literature in which electron density is

determined using N2 OES in nitrogen containing plasmas. The first such example is Lebe-

dev and Shakhatov (2005) [43]. The authors developed a novel method for determining

electron density and electric field using the vibrational distribution of the N2(C3Πu) state.

The method used a 68 reaction kinetic model including reactions involving 10 electronic

states of N2 as well as the ground state of atomic nitrogen. The work was performed in

a low pressure RF discharge. This method was followed by simpler methods performed

by Isola in 2009 [44] as well as Zhu and Pu in 2008 [10] who instead used an intensity

ratio of the N2(C−B) spectra to the N+
2 (B−X) spectra and included far less kinetics. The

latter method has become a relatively standard practice and will become the initial focus

of this work, despite the fact that it requires either a calibration point or a measurement

of absolute irradiance. Isola et al. (2009) [44], in an early example of a typical approach

to these techniques, measured electron density and temperature using the ratio of the SPS

and FNS bands. The authors did not measure absolute irradiance (as is common in other

works [22, 45–48], but rather used one calibration point of electron temperature or density

(via Langmuir probe) in order to use a simple ratio technique. This was performed in a

medium pressure (2-4 Torr) pure N2 discharge. Results were shown to agree with Lang-
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muir probe measurements. This effort is highly relevant to this work as a similar approach

is taken in chapter IV.

Another relevant study was performed in 2013, in which a 16 reaction excitation model

was used by Pothiraja et al. [48] to deduce a dependence of electron density and reduced

electric field on absolute photoemission of the FNS and SPS in an atmospheric N2/He

pulsed microdischarge. It was assumed that the N2(C3Πu) and N+
2 (B2Σ+

u ) states are pop-

ulated by three primary methods: direct excitation from the ground state, direct excita-

tion from the N2(A) metastable state and a pooling reaction from the metastable state.

The authors then used fast intensified charge-coupled device (ICCD) imaging along with

two interference filters, each having an approximately 5 nm full-width at half maximum

(FWHM), one centered on the primary band head of the FNS and one centered on the pri-

mary band head of the SPS, in order to experimentally determine absolute photo-emission

from the two systems. These two values were then used to calculate electron density with

high spatial and temporal resolution. If all assumptions used were valid this method is

highly novel and useful in determining electron density in atmospheric pressure N2/He

plasmas [35]. A similar approach was taken by Steves et al. (2013) [47], where a 6 mech-

anism kinetic scheme was used for the N2(C3Πu) and N+
2 (B2Σ+

u ) states. This method

was used to determine electron density and temperature in a low pressure oxygen RF/Mi-

crowave discharges. Here N2 was mixed into the volume at a 5% ratio as a sensing gas.

The authors determined however that the OES analysis alone was not enough to deduce a

unique set of electron density and temperature parameters as two solutions produced simi-

lar emission intensities. For this reason, a resonance probe was used to confirm the results,

validating one of the two possible solutions.

Finally, a recent study by Bı́lek et al. (2019) [40] conducted a thorough study of the

use of the N2/N+
2 ratio for determination of reduced electric field in transient discharges for

pure nitrogen. This study is a significant contribution as it examines 101 reaction mech-
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anisms and provides distilled lists of important mechanisms for specific cases in terms of

working pressure and specific vibrational bands used. In the case most relevant to this

work, for medium pressure (7.6 Torr) and the use of the FNS(0,0)/SPS(0,2) ratio, the au-

thors highlight the mechanism set used by Isola et al. [44] in addition to several important

collisional processes including collisional quenching of N2(C3Πu) and N+
2 (B2Σ+

u ) by N2

as well as V-T relaxation of the N2(C3Πu),v = 1 to the N2(C3Πu),v = 0 state. Though

the latter process, N2(C3Πu)v=1 + N2→ N2(C3Πu)v=0 + N2, for which the rate is compa-

rable to the quenching rates of N2(C3Πu),v = 0, is difficult to include in simple models as

absolute density in N2(C3Πu),v = 1 is not typically known.

OES using strong atomic oxygen lines.

The two strong oxygen triplets, 844 nm multiplet (3p3P→ 3s3S◦) and 777.4 nm multi-

plet (3p5P→ 3s5S◦) , are among the strongest lines in the optical spectra of air discharges.

As is the case of the similarly dominant N2 spectra, they present one of the best opportu-

nities for passive characterization of air plasmas. Here a brief overview of recent literature

which exploit these two lines is provided. A significant fraction of the literature relates

regarding these lines relates to actinometry techniques, the previous work regarding those

techniques is detailed in chapter IV. The basic emission analysis for these two triplets are

generally considered to follow the corona model with addition of a dissociative excitation

route from O2, the importance of which was highlighted in 1991 by Collart et al. [49]. As

such the two lines are primarily sensitive to the EEDF or effective electron temperature

and the dissociation fraction of the plasma. Several recent studies have made use of these

lines in order to make determinations of local electron temperatures. Recently, Tsutsumi

et al. (2017) [50] used an advanced actinometry approach which imaged the ratio of the

two strong oxygen lines to well know argon lines. This data was used to produce spatially

resolved determinations of both dissociation fraction and mean electron energy. In a sim-
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ilar study, performed by the same group, Greb et al. (2013) [51], the same method was

used and compared well against a more explicit and trustworthy method of two-photon ab-

sorption laser-induced fluorescence (TALIF). In 2011, Milosavljevic et al. [52] examined

the use of these strong triplets in a fluorocarbon/O2/argon discharge. The authors note the

importance of both cascade emission (as is discussed in great detail in chapter III) and heat-

ing of the EEDF tail induced by the presence of the fluorocarbon, on the applicability of

the 777 nm for OES diagnostics. This study is also one of the only examples in literature

which studies the 615.7 nm multiplet (4d 5D◦→ 3p 5P ) in any detail. In chapter IV, the

615.7 nm multiplet is examined as a candidate for techniques similar to those which use the

other lines discussed above. Previous work regarding these atomic oxygen lines show their

great utility as plasma diagnostics as well as potential for application in novel techniques.

Though as will be seen in chapters III and IV, there are many considerations which make

their applicability highly situational, and the 844 nm line tends to follow the basic models

more reliably than that of the 777 nm line.

Supersonic Plasma Jets.

There is a wide variety of interesting applications of supersonic plasma flows, including

thin film deposition [53], high speed aerodynamics [20], general material processing [54],

laboratory modeling of space vehicle atmospheric entry [42], and gas-dynamic lasers [55].

Therefore the characterization and development of laboratory supersonic flows has been

a consistently studied topic for decades. These supersonic plasma flows are characterized

by large densities of excited and ground state species which would typically be subject

to fast collisional deactivation in stationary discharges, such as metastables, dissociated

atoms, and vibrationally excited molecules [56]. Though there are a variety of methods of

achieving supersonic plasma flows, their differences are similar to the general differences

in typical plasma sources as they are typically direct-current (DC), radio-frequency (RF),
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or high frequency microwave driven. The other necessary element is of course a standard

converging-diverging nozzle (de Laval), the design of which is complicated by the difficulty

of manufacturing materials which can withstand the highly kinetic and high temperature

environments generated by the discharges. In the case of DC supersonic discharges, a

water-cooled metal nozzle is often used and doubles as either the anode or cathode, as

in the case of the experimental work of Lago et al. (2007) [21]. For microwave flows,

power has been applied on both the subsonic side of the flow [20,22] and in the supersonic

portion of the flow [57]. For this work, the general design was chosen to follow those who

have used microwave excitation in the supersonic portion, with the nozzle incident on the

cavity [20, 22]. A good example of an RF supersonic flow is the case of Sember et al.

(2002) [58], in which a high power (20 kW) inductively coupled plasma (ICP) torch and de

Laval nozzle configuration was expanded into a low pressure chamber.

Numerous diagnostics have been employed on the types of discharges discussed above

and follow a trend similar to stationary plasmas. Lago et al. (2007) used OES and a

Langmuir probe to study a plasma jet which was produced by a “vortex stabilized dc-arc

torch” and the gas used was a CO2 N2 mixture. They report rotational and vibrational

temperatures from fits of the N2 SPS as well as electron temperatures (EEDF) from the

Langmuir probe. This study was conducted in order to predict conditions for Martian at-

mospheric entry at hypersonic velocities [21]. Nikolic et al. (2013) built a supersonic

microwave excited Mach 2 argon plasma flow, in which a Laval nozzle was coupled into a

microwave wave guide and a 2.54 GHz magnetron is used to ionize the Mach flow down-

stream from the nozzle [22]. Here OES diagnostics of argon were used to produce spatially

resolved density distributions of excited argon states. In 2009, Mazouffre and Pawelec [42]

used laser induced fluorescence (LIF) to measure the velocity distribution function of the

O(3s 5S◦) atomic oxygen metastable in a CO2 supersonic plasma expansion, by pumping

the 777.4 nm multiplet (3p5P→ 3s5S◦) . The location of shocks are indicated by abrupt in-

28



www.manaraa.com

creases in the perpendicular temperature of the metastable atoms, additionally, the authors

observed a common phenomenon for these types of discharges in which the perpendicular

temperature falls below the parallel temperature in the expansion region as collisions are

too infrequent to thermalize the two temperatures. LIF appears to be a popular technique in

these plasma flows, Broc et al. (2004) [56] used LIF in order to spatially resolve densities

of NO, atomic nitrogen, and atomic oxygen in an RF supersonic flow and noted similar ax-

ial density distributions for each which approximately follow a Z−2
th dependence, where Zth

is the axial position downstream relative to the throat. There are many examples in litera-

ture of OES measurements of rotational temperatures, including [20,21,56,59,60]. Similar

OES techniques, along with LIF techniques for determining species densities, appear to be

among the most popular optical diagnostic techniques in plasma flows.

Diagnostics of electron temperatures and densities were not widely found in the liter-

ature search conducted for this work, though there are examples, as in [58], where stark

broadening of the Hβ line was used to determine electron density and a Saha equilibrium

was assumed to calculate an electron temperature. In another work, a Langmuir probe was

used to characterize the electron population [21], as discussed above. In summary, diag-

nostics and sources used in supersonic flows are similarly diverse to those used in other

laboratory plasmas, but because knowledge of local gas temperatures and densities is more

limited in the case of these highly dynamic supersonic flows, more attention is needed to

develop diagnostics to measure these basic bulk gas properties.
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III. Atomic Oxygen Collisional-Radiative Model

The corona model, as discussed in section 2.3, along with corrections such as metastable

excitation and cascade contributions, has been widely used in plasma diagnostics, partic-

ularly in plasmas with a single atomic or molecular species or with trace amounts of a

second species. [9, 10] However, in air plasmas, due to the vast number of reactive species

and non-equilibrium processes present, this corona approximation and its extensions are

often not predictive of actual spectra. This is especially true for medium (near 1 Torr) and

high pressure plasmas (atmospheric pressure) where quenching rates with neutral species

are high. However, if quenching rates are known and electron excitation and spontaneous

emission rates are sufficiently high, line intensities can still be strongly dependent on elec-

tron parameters even in complex multispecies plasmas. [61]

Such an opportunity is presented by the strong optical lines of excited atomic oxygen.

For example, the 844 nm oxygen line originating from the 3p 3P→ 3s 3S◦ transition has a

condensed set of mechanisms accepted in literature [62] based on only quenching, electron

impact excitation from the ground state, and spontaneous emission (though dissociative

excitation is considered for high electron temperatures). For the remainder of this disserta-

tion, this set of mechanisms is referred to as the extended corona model. In this situation,

the steady state density for the 3p 3P state can be written as

n(3p 3P) =
nOne < σeνe > +nO2ne < σdeνe >

∑ f<i Ai f + ∑m nmQim
, (16)

where σe and σde are the electron impact excitation and dissociation excitation cross sec-

tions, respectively, νe is the electron speed, nO, nO2 , ne, and nm are the atomic oxygen,

molecular oxygen, electron, and quencher densities, respectively, Ai f is the Einstein coef-

ficient for spontaneous emission transition i→ f and Qim is the quenching rate for species

i on quencher m. This analytic 2 level, 4 mechanism model (extended corona model) de-
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pends only on electron temperature or the electron energy distribution function (EEDF),

electron density, pressure, and dissociation fraction. For this reason, the 844 nm line can

be and is used as a diagnostic and for model validation. Recently, these basic assumptions

have been extended to the similarly intense line at 777 nm from the 3p 5P→ 3s 5S◦ transi-

tion [50, 51, 63]. In this case, the ratio of 777 nm to the 844 nm line ratio can be found to

be

I777nm

I844nm
=

A777λ844τ5P
A844λ777τ3P

[
nOk

5P
e + nO2k

5P
de

nOk3P
e + nO2k3P

de

]
, (17)

where τ is the lifetime of the species, and k is the appropriate rate calculated from <

σνe >, where the brackets denote the mean value. The utility of the above expression

is obvious since an experimentally measured ratio is only a function of two unknowns,

dissociation fraction and electron temperature or EEDF, as electron density and molecular

oxygen densities cancel. Used along with other experimental data this method has been

effective in determining both unknowns [50,51,63]. However, quenching rates for common

species besides molecular oxygen are not available in literature for the 3p 5P state which

makes use of the 777 nm line more problematic in air plasmas. Additionally, besides

limited positive diagnostic results, this extended corona model has not been thoroughly

validated. Unlike commonly used rare-gas diagnostic techniques, this extended corona

model for oxygen lacks any accounting for metastable excitation or cascade contributions.

The latter is commonly neglected for oxygen states due to the recommended and available

cross sections being direct electron excitation cross sections rather than apparent cross

sections which include cascade effects. The objectives of this chapter are to test the validity

of the extended corona model for modeling the 777 nm / 844 nm line ratio and to quantify

the impact of electron excitation from the metastables (1S, 1D, and 3s 5S◦) and the low

lying 3s 3S◦ state, as well as cascade emission from higher lying states.

For these reasons, a collisional-radiative model has been developed for atomic oxygen
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valid for a range of gas compositions using the best available cross sections and collisional

rates [3, 7, 18, 62, 64]. Although other thorough collisional-radiative models for atomic

oxygen exist in literature [61, 65, 66], none were suited to answer the questions posed here

and each would benefit from a more modern rate package. The basis of the model is a

96 level system which considers electron impact excitation, electron impact de-excitation,

electron impact dissociative excitation, spontaneous emission, and quenching from 10 col-

lisional partners. Additionally, effective cascade emission cross sections are calculated to

account for cascade emission populating of the 3p 3P and 3p 5P states. The inclusion of a

cascade rate using this cross section is less ideal than using apparent cross sections, which

is recommended for OES diagnostic techniques [9]. However, the commonly used and

recommended cross sections for the oxygen states considered here are direct cross sec-

tions that are either measured or calculated as direct cross sections or cascade corrected

apparent cross sections [7]. A potential advantage of this approach is that apparent cross

sections are inherently pressure dependent due to radiation trapping. The calculated 777

nm/844 nm oxygen line ratio is calculated and presented using (1) the 96 level collisional-

radiative model, (2) the extended corona model, and (3) the extended corona model includ-

ing cascade contributions. Mechanisms accounting for discrepancies between the models

are identified using a rate sensitivity analysis.

3.1 Kinetic Model

The collisional-radiative model developed here is a mechanism reduced version of the

general approach of Vlcek et al. [28]. The model considers the following processes: (1)

direct electron impact excitation (ki f
e ) and de-excitation (ki f

ed) where i and f are the level in-

dices given in Table 2, (2) dissociative excitation (k f
de) from molecular oxygen, (3) quench-

ing from a number of collisional partners as detailed in Table 7, and (4) spontaneous emis-

sion. In the equations below the energy ordered state indices, i and f , represent the initial
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and final states of the process, respectively. In the case of dissociative excitation the product

Ol is arbitrary. Table 2 gives a summary of the lowest 10 states used in this model.

Oi + e−
ki f

e←→
ki f

ed

O f + e− (18)

O2 + e−
k f

de−→ O f + Ol + e− (19)

Oi + m
ki f

q−→ O f + m (20)

Oi
Ai f−−→ O f + γ (21)

Table 2. First 10 oxygen levels considered

index Configuration Term g E (eV )

0 2s22p4 3P 9 0.009668
1 2s22p4 1D 5 1.967364
2 2s22p4 1S 1 4.189746
3 2s22p3(4S◦)3s 5S◦ 5 9.146091
4 2s22p3(4S◦)3s 3S◦ 3 9.521364
5 2s22p3(4S◦)3p 5P 15 10.740638
6 2s22p3(4S◦)3p 3P 9 10.988841
7 2s22p3(4S◦)4s 5S◦ 5 11.837606
8 2s22p3(4S◦)4s 3S◦ 3 11.930385
9 2s22p3(4S◦)3d 5D◦ 25 12.078633
10 2s22p3(4S◦)3d 3D◦ 15 12.087030

Quenching.

The first order decay rate coefficients, ki f
q represent the quenching from all collisional

partner species m which produce the transition i→ f . The total quenching of the state i is
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calculated as

∑
f

ki f
q = ∑

m
Qimnm. (22)

Where Qim are the literature rates for quenching of oxygen species i by collision partner

species m = N2,O2,Ar,etc. as summarized in table 7, and nm is the density of the mth

quencher. As the majority of quenching rates are not reported with a temperature depen-

dence and have been measured at 300 K when indicated, a gas temperature of 300 K was

assumed for all calculations in this work, rather than extrapolating the rates to higher tem-

peratures. Quenching rates for many excited states are not available in literature. In cases

with blank entries in table 7, rates were assumed to be zero. In the case of the 3s 3S◦ state,

quenching rates were assumed to be equal to that of the 3s 5S◦ state, as quenching rates for

the latter were found for common collision partners in [67]. Similarly, rates for quenching

of 3p 5P for collision partners besides O2 were assumed to be equal to those of the 3p 3P,

as this assumption has been used by [3, 63]. In the case of quenching of 3p 3P and 3p 5P

on O2, rates have been measured and taking the approximation above would have yielded

an error of approximately 15%, with measured rate uncertainties reported to be 5.3% and

16.7% for the 3p 3P [2] and 3p 5P [3] states, respectively. Thus, in the only case where

data is available, our above assumptions are within rate coefficient measurement error. For

excited states above the 3p 3P state (i > 6), quenching rates were neglected.

Because products in quenching processes are typically not detailed for published rates,

and it was ideal to conserve density; an approximate scheme was developed in order to

estimate branching coefficients. This allowed for estimates of the rate ki f
q to be used rather

than the sum over all f . As an estimate, the normalized maxima of the electron impact

excitation cross sections was chosen as these branching coefficients. Thus the quenching

rates were calculated as

ki f
q =

max(σ
i f
e )

∑k<i,k 6= f max(σ ik
e ) ∑

m
Qimnm (23)
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Table 3. Quenching rates used for this work (cm3 s−1). Temperature dependent rates were evaluated
at 300 K. Values with † are assumed.

m\i 1D 1S 3s 5S◦ 3s 3S◦ 3p 5P 3p 3P

N2 2.3e-11 [62] 1.0e-17 [62] 3.5e-11 [67] 3.5e-11† 5.9e-10† 5.9e-10 [2]

O2 3.4e-11 [62] 2.4e-13 [62] 2.2e-10 [67] 2.2e-10† 1.1e-09 [3] 9.3e-10 [2]

Ar 5.9e-13 [68] - 2.9e-15 [67] 2.9e-15† 1.0e-10† 1.0e-10 [69]

CO2 - - 5.3e-10 [67] 5.3e-10† - -
H2O - - - - 4.9e-09† 4.9e-09 [69]

O 8.0e-12 [62] 1.8e-11 [62] - - - -
N - 1.0e-12 [62] - - - -
O3 2.3e-10 [62] 6.0e-10 [62] - - - -
NO - - 1.9e-10 [67] 1.9e-10† - -
O2(a) - 1.7e-10 [62] - - - -

For comparison of this approximation, there exist a small amount of data regarding

branching ratios for quenching of the 3p 3P state. Dagdigian et al. [3] measured the branch-

ing from 3p 3P to the 3p 5P to be 8% and 3% for O2 and N2 collisional partners, respectively.

Uncertainties for those values were stated to be approximately a factor of 2 and it was noted

the values were low considering the energy spacing of the states and the large energy differ-

ence between the 3p 3P and the next lowest state. More recently, Tendo et al. [68] measured

the branching ratio of 3p 3P quenching to 3s 3S◦ with collisional partner argon and found a

value of approximately 40%. Using method of equation 23, the branching ratio for 3p 3P

quenching with an arbitrary collisional partner was found to be approximately 28%, 65%

and 7% to the 3p 5P, 3s 3S◦ and 3s 5S◦ states, respectively. In the absence of a more ac-

curate method, the branching scheme as described above was used, except in the cases of

3p 3P quenching to 3p 5P on O2 and N2 collisional partners, where the results of Dagdigian

et al. [3] were used. In most cases, determining the final state for collisional quenching

is not crucial for spectroscopic diagnostics of atomic oxygen as it largely populates states

which are not strong radiators and would otherwise be similarly populated by radiation.

However, in the case of 3p 3P quenching to 3p 5P, good estimates for branching ratios may
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be crucial for some circumstances as the rate can become comparable to direct electron

impact excitation from the ground state.

Electron Impact Dissociation and Dissociative Excitation.

In order to directly model the distribution of states of atomic oxygen in a discharge, it

is crucial to understand electron impact dissociation and its resulting fragments. For the

model in this work, it is assumed that all atomic oxygen is a result of electron collisions

with O2(X3Σ−g ) and all atomic oxygen production from excited O2 and O3 is ignored.

Though rates for direct electron impact excitation from ground state atomic oxygen typ-

ically dominate dissociation excitation rates for high lying excited states, the latter are

clearly non-negligible. For example, it is well known that dissociative excitation is an im-

portant populating process in oxygen discharges, particularly for the 777.4 nm multiplet

(3p5P→ 3s5S◦) [70].

Though dissociation of O2 has been extensively studied [64, 71–77] by both time of

flight and emission methods, the rates and cross sections currently exist in a variety of ca-

pacities. This is due to the nature of dissociation, various channels, and emission cascade

contributions. For example, Cosby [74], measured the total dissociation cross section for

electron impact of O2 in vibrationally excited O2 with v ≤ 4. Dissociation was reasoned

to be dominated by two sets of fragments, O(3P)+O(3P) and O(3P)+O(1D). In addition

to the total dissociation cross section, Cosby gives a partial dissociation cross section for

dissociation fragments above an energy threshold of 2.7 eV. Table 4 provides a summary

of the dissociative excitation rates and cross sections used for this work. Dissociative exci-

tation rates are included in the model for the first 7 states. Any dissociative excitation for

higher states that results in cascading emission into the lower 7 states is already included

in the dissociative excitation cross sections by the nature of those experiments.
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Table 4. Dissociative excitation rates and cross sections

Configuration Term Threshold σDE(100 eV) kDE(1 eV) σDE Ref.

eV 10−20 cm2 cm3s−1

2s22p4 3P 13.5 330 2.44e-12 [74]
2s22p4 1D 13.5 330 6.23e-14 [74]
2s22p4 1S 16 204 6.57e-17 [72]
2s22p3(4S◦)3s 5S◦ 14.3 647 6.03e-16 [72]
2s22p3(4S◦)3s 3S◦ 14.4 293 1.64e-16 [71]
2s22p3(4S◦)3p 5P 16.7 430 4.28e-17 [64]
2s22p3(4S◦)3p 3P 17 200 1.97e-17 [64]

Global Loss Rates.

Due to the inclusion of dissociation and dissociative excitation, it is necessary to in-

clude a mechanism for loss of all atomic oxygen species in order to maintain a desired

dissociation fraction. Ideally, rates for dominant recombination and loss mechanisms such

as 3-body recombination and a wall rate with accurate rates for each excited state would

be included. However, because a complete set of such rates does not appear to be available

in literature, a global loss rate is included. This effective approximation is that all atomic

oxygen states have the same wall and recombination rates. Each possible value of this loss

rate corresponds to a resulting dissociation fraction when the model reaches equilibrium.

Rather than set this global loss rate directly, a target dissociation fraction is set and the loss

rate is determined numerically as the rate which leads to an equilibrium with the desired

dissociation fraction. This is accomplished by allowing the model to adjust the global loss

rate at each time step depending on whether the actual dissociation fraction agrees with the

target dissociation fraction. For a given dissociation fraction, the model converges rapidly

to a global loss rate. To ensure that this method for determining the rate does not impact the

final results, it was confirmed that initializing the simulation with a fixed loss rate yields

identical results to the method discussed above. Because this global loss rate balances
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atomic oxygen population by dissociation, it is on the order of the dissociative excitation

rates.

Finally, it is noted that this global loss rate does not significantly impact strongly radiat-

ing states and remains orders of magnitude less than the total removal rates of the 3p 3P and

3p 5P states. The largest value of the loss rate observed for all the calculations presented

here, relative to other important removal rates (spontaneous emission and quenching) was

approximately 14% and 10% of the quenching rates of the 3p 3P and 3p 5P states, re-

spectively. However, this was observed at 1 mTorr where even the quenching rates are

negligible. The impact of including this global loss rate is discussed further in section 4,

particularly with respect to comparing the results of the collisional-radiative model to the

corona models which do not include this rate.

Numerical Model.

The electron impact and dissociative excitation rates were calculated in the usual way,

k = 〈σνe〉, using electron energy distribution functions generated by BOLSIG [11] and

appropriate cross sections from literature. For simplicity only initial gas species (O2 ,N2

,Ar) and dissociated atomic oxygen were considered for the BOLSIG EEDF calculations,

though in most cases inclusion of atomic oxygen had a negligible impact on the EEDF and

subsequent results, and in these cases it was excluded from EEDF calculations for simplic-

ity. Electron impact excitation cross sections from the ground state were taken from Laher

and Gilmore (1990) [7]. For electron excitation from the first 6 excited states, cross sec-

tions were taken from Barklem (2007) [18]. Cross sections from literature sources which

did not include data tables were digitized from figures. A summary of the cross sections

for dissociative excitation and their sources is given in Table 4. Einstein coefficients for

spontaneous emission were taken from NIST [33]. The rate equation for an arbitrary level,
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denoted by index j, is

dn j

dt
= ne ∑

i< j
niki j

e + ne ∑
i> j

nik
i j
ed + nenO2k j

de + ∑
i> j

niki j
q + ∑

i> j
niAi j−

ne ∑
f> j

n jk j f
e −ne ∑

f< j
n jk

j f
ed −∑

f< j
n jk j f

q −∑
f< j

n jA j f −n jR,
(24)

where rate R is the global removal or loss rate, as discussed in section 2.3. Equation 24

represents a set of j coupled first order linear differential equations. The steady state solu-

tion is found by using a numerical ordinary differential equation (ODE) solver, with initial

conditions [ne,n0,n02 ,Te]. The ODE solution was chosen over the typically more desirable

direct eigenvalue matrix methods due to poorly conditioned rate matrices. However, both

methods were shown to produce the same steady state results independent of reasonable

choices for ODE initial conditions. The ODE algorithm used was a python implementa-

tion of the LSODA ODE library, which uses a backward differentiation formula (BDF)

algorithm for stiff systems.

Gas densities used for initial conditions and for calculating quenching rates are calcu-

lated based on fractional concentrations, dissociation fraction (defined here as the fraction

of reagent which has been dissociated), and using the ideal gas law at the appropriate

pressure and assuming a gas temperature of 300 K. If the temperature dependence of the

quenching rates is ignored, which may be reasonable at low pressures, the results here can

be extrapolated to higher temperatures by adjusting the indicated pressure appropriately.

For the conditions studied here, gas temperature was not found to be an important input

parameter for the BOLSIG EEDF calculations, though a value of 300 K was taken.
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3.2 Effective Cascade Cross Section

In an effort to simplify the results of this model for use in basic diagnostic techniques

along with recommended direct electron excitation cross sections, the total effective cas-

cade cross section was calculated. In the case of Maxwellian EEDFs, a temperature de-

pendent effective cascade rate can be used. However, for non-Maxwellian EEDFs, such

as those generated by BOLSIG [11] or LoKI-B [12], fits to standard temperature depen-

dent rate coefficients had significant residuals. Thus the effective cascade cross section

should be used to account for cascade in non-Maxwellian cases. If the mechanisms of

highly ( j > 7) excited states are limited to direct electron impact excitation and sponta-

neous emission, the steady state density is

n j =
nen0 < σ0 jνe > +∑i> j niAi j

∑ f< j A j f
. (25)

The total cascade into state k is

Ck = ∑
j>k

A jkn j = ∑
j>k

A jk
nen0 < σ0 jνe > +C j

∑ f< j A j f
= nen0 < σ

(1)
e f f νe > + ∑

j>k

A jkC j

∑ f< j A j f
, (26)

where

σ
(1)
e f f = ∑

j>k

A jkσ0 j

∑ f< j A j f
(27)

is the first order effective cascade cross section, as it does not consider cascade for any

states beyond state k. However, the total effective cascade cross section can be iteratively

determined using the recursive nature of equation 26, beginning with a highly excited state

for which it can be assumed that the cascade contribution is negligible. Effective total

cascade cross sections calculated in this way, using 96 states of oxygen, for the 3p 3P and

3p 5P states are shown in Figure 3.
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Figure 3. Effective Cascade cross sections for the 3p 3P and 3p 5P states as calculated for 96 excited
states of oxygen.

3.3 Results

Unless stated otherwise, the following results were calculated for an electron density of

1010 cm−3. A gas temperature of 300 K is assumed for all calculations. In all cases BOL-

SIG [11] is used to generate the EEDF for a variety of values for reduced electric field,

E/N, and the effective electron temperature is taken to be 2/3 the mean electron energy.

Bulk gas species considered for BOLSIG calculations are 98 % O2, 2% Ar for figure 5 and

80% N2, 20% O2 in all other figures. In most cases the impact of dissociation fragments

and other species on the EEDFs are assumed to be negligible. As part of this work, inclu-

sion of the appropriate amount of atomic oxygen for a given dissociation fraction in the

BOLSIG EEDF calculations was investigated. For the case of the synthetic air mixture, the

impact on all results was negligible. In the case of the oxygen argon mixture, the fractional
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concentration of atomic oxygen did modify the resulting EEDFs in a manner significant

enough to impact the line ratio results, particularly at low temperatures (< 2 eV) and high

dissociation fractions (10%). For this reason, both the results for considering only bulk

gas species (O2/Ar) and the results which include atomic oxygen (O2/Ar/O) are included

in calculation of EEDFs, in the case of the oxygen argon mixture. For all synthetic air

results present here, only the bulk gas species (N2/O2) are used in BOLSIG EEDF cal-

culations. Quenching partners considered for all results include the appropriate bulk gas

species (N2/O2 or O2/Ar), dissociation fragments O and N, where nitrogen is assumed to

have the same dissociation fraction as oxygen, as well as O3 and O2(a1∆g) each at 5%

the concentration of O2. In general our results were not sensitive to the concentrations of

O2(a1∆g), O3, and N. This is because only the 1S and 1D have non-zero quenching rates

with these species for this work, and the 1S and 1D have weak electron excitation cross

sections to the 3p 3P state and a null electron excitation cross section to the 3p 5P state.

Figure 4 shows the steady state fractional concentration of the first 6 excited states for

a synthetic air mixture (80% N2, 20% O2), an effective electron temperature of 3 eV, and a

dissociation fraction of 10%. The metastable 1D and 1S states and the 3s 5S◦ state, all with

long radiative lifetimes, have considerable concentrations at low pressures and decrease at

higher pressures due to collisions with heavy neutral particles. The remainder of the states

in the active region, 3s 3S◦, 3p 5P and 3p 3P, have concentrations which remain relatively

constant with pressure as short radiative lifetimes dominate until collisional de-excitation

becomes comparable. For the 3s 3S◦ state, this occurs at approximately 10 Torr while in

the 3p 5P and 3p 3P collisional de-excitation or quenching becomes non-negligible near

approximately 0.1 Torr. Note that after 0.1 Torr, the increasingly shorter lifetime of the

3p 5P and 3p 3P states leads to an increase of rates which populate the lower energy 3s 5S◦

and 3s 3S◦ states, which accounts for the inflection of the 3s 5S◦ concentration at high

pressures and the delayed decline, with respect to pressure, in concentration of the 3s 3S◦
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state.

The validity of the extended corona 777 nm/844 nm line ratio model, as given in equa-

tion 17, most strongly depends on operating pressure and dominant gas species used to

calculate the electron energy distribution function. Two sets of results are presented; one

for the case of an oxygen plasma with trace amounts of argon (2%) and one for the case of

synthetic air (79% N2, 21% O2). The expected 777 nm/ 844 nm line ratio was calculated

using 3 different methods: (1) using the 96 level collisional radiative model as described in

section 2, (2) the basic model often used in literature and given by equation 1 and (3) the

basic model in equation 1 with the inclusion of a cascade emission rate calculated using the

cross sections found in section 3.
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Figure 4. Steady state fractional concentrations for the first 6 excited states as calculated by the 96
collisional-radiative model.

Figure 5 illustrates the results for the oxygen/argon mixture for operating pressures of

760, 1, and 0.001 Torr and at both 10% and 1% dissociation. In each case there is a large

discrepancy between the collisional-radiative model and the basic models, particularly at

low temperatures. In order to determine the mechanisms underlying this discrepancy, a

simple rate sensitively analysis was employed. Each element of the rate matrix was inde-

pendently (all other rates remained constant while one rate was interrogated) and iteratively

adjusted over a range of approximately ±20%, while the resulting impact on the line ratio

was observed. This way a new matrix was constructed, with the shape of the rate matrix,

containing the derivatives of the line ratio with respect to each individual rate. Based on

this rate sensitivity analysis, it was found that at low temperatures the line ratio as calcu-

lated by the collisional-radiative model is strongly influenced by electron impact excitation

from the metastables. At higher temperatures, the discrepancy is a result of both cascade

emission from excited states and collisional quenching of the 3p 3P state to the 3p 5P state.
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The largest discrepancy between the basic model and the collisional radiative model was

observed at low pressures, where the strong influence of metastables exists at all tempera-

tures.
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Figure 5. Calculated line ratios using the collisional radiative model and basic models for the 98 % Oxy-
gen 2% Argon mixture for (a) 760 Torr and 10% dissociation fraction, (b) 760 Torr and 1% dissociation
fraction, (c) 1 Torr and 10% dissociation fraction, (d) 1 Torr and 1% dissociation fraction, (e) 1 mTorr
and 10% dissociation fraction, (f) 1 mTorr and 1% dissociation fraction. Dashed lines were calculated
using BOLSIG EEDFs which considered bulk species and atomic oxygen at the labeled dissociation
fraction. Solid lines only considered bulk species for EEDF calculations.
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Figure 6 shows the results for synthetic air, where the inclusion of nitrogen as the dom-

inant species drastically alters the EEDF and the subsequent dependence of the calculated

line ratio on the effective electron temperature. In the case of synthetic air, excitation from

metastable states accounts for discrepancies only at low pressures, figure 6 (e) and (f). At

higher pressures, 1 Torr and 760 Torr, cascade emission and collisional quenching of the

3p 3P state to the 3p 5P state account for the differences between the basic model and the

collisional radiative model. Another disagreement between the basic corona models and

the collisional-radiative model is the strong electron density dependence the line ratio has

at low pressures. Figure 7 shows the 777 nm/844 nm line ratio as a function of electron

density for the case of synthetic air, an effective electron temperature of 3 eV and a disso-

ciation fraction of 5%. The ratio was calculated for four different pressures. The results

show that the density dependence can only be ignored for high pressures or for low electron

densities. The sensitivity analysis highlighted that the calculated line ratio at low pressures

and high densities is highly sensitive to the kinetics of the 3s 5S◦ state. The kinetic situation

for the 3s 5S◦ state in these conditions is complex and strongly depends on nearly all of the

first 7 states in the model. It should be noted again that the line ratios calculated in Figures

5 and 6 used an electron density of 1010 cm−3. This value was chosen as it is a reasonable

average for laboratory plasmas. However, the agreement between the different models il-

lustrated in 5 and 6 would be diminished for electron densities larger than 1010 cm−3 for

the 1 Torr and 1 mTorr cases. For densities lower than 1010 cm−3 the line ratios calculated

for both the 760 Torr and 1 Torr cases would be nearly unchanged, while the 1 mTorr case

would see significantly better agreement.

Among the possibilities for additional mechanisms underlying the discrepancies pre-

sented in figures 5 and 6 is the global loss rate which is included in the collisional-radiative

model and ignored in the corona models. To investigate this further the line ratios were

calculated for the parameters in figures 5 and 6 using the corona model as in equation 17,

47



www.manaraa.com

with the addition of the same global loss rate used by the collisional-radiative model in the

denominator. The error of this line ratio, relative to the line ratio calculated using equation

17 was at most 0.0003%. Therefore it is concluded that the discrepancies incurred by the

global loss rate are negligible compared to those discovered by the rate sensitivity analysis

and discussed above.

Finally, for reference, Figure 8 provides the 777 nm/844 nm line ratio as calculated by

the 96 level collisional-radiative model as a function of dissociation fraction and electron

temperature for 9 separate pairs of electron density and pressure. Figure 8 should provide

relatively accurate results outside of provided values for electron density particular for

lower densities at medium to high pressures.
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Figure 6. Calculated line ratios using the collisional radiative model and basic models for the synthetic
air mixture for (a) 760 Torr and 10% dissociation fraction, (b) 760 Torr and 1% dissociation fraction,
(c) 1 Torr and 10% dissociation fraction, (d) 1 Torr and 1% dissociation fraction, (e) 1 mTorr and 10%
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Figure 8. Calculated line ratios using the collisional radiative model as a function of dissociation frac-
tion and effective electron temperature for synthetic air at a range of electron densities and pressures
and at a gas temperature of 300 K.

3.4 Discussion

In all cases, the cascade rate using the effective cascade cross sections calculated in

section 3 increased the agreement of the basic model with the collisional radiative model

without drastically complicating calculation of the line ratio. Table 5 gives the mean error

of the basic corona models with respect to the collisional-radiative model for synthetic air

over the 1-5 eV effective electron temperature range. In some cases, such as at 1 Torr for

both gas mixtures (Figure 5 c and d, Figure 6 c and d), the inclusion of cascade emission
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provides good agreement between the corona based model and the 96 level collisional ra-

diative model, with an average error of less than 4% for 1 Torr in synthetic air. In general,

the basic models become poor approximations at low pressures where slow collisional re-

laxation rates of 1D, 1S, and 3s 5S◦ states lead to increased densities in those states and

subsequent step-wise electron impact excitation to the 3p 3P and 3p 5P states. Though even

at low pressures the calculated line ratio has a weak dependence on 1D and 1S densities,

the electron impact excitation rates from the 3s 5S◦ state are found to strongly influence

the calculated line ratio. This is because the rate for excitation from 3s 5S◦ to 3p 5P is

nearly 20 times that of 3s 5S◦ to 3p 3P at 1 eV. At low pressures, the densities of the 3s 5S◦

state are significantly high such that the excitation rate for the 3p 5P state from the 3s 5S◦

state is a significant fraction of the electron excitation from the ground state. Additionally,

because the kinetics of the 3s 5S◦ state are strongly connected by electron excitation to the

3s 3S◦, 3p 5P, and 3p 3P states and strongly populated by emission from the 3p 5P state,

its steady state density depends on nearly all of the first 7 states of atomic oxygen. This

complex reliance of the spectra on the 3s 5S◦ state provides the strong dependence of the

777 nm/844 nm line ratio on electron density at low pressures and high electron densities.

Figure 9 shows the magnitude of the steady state rates to and from the 3s 5S◦ state as cal-

culated using the collisional radiative model at low pressure (1 mTorr) and high electron

density (1012 cm−3). This shows the importance of the 3s 5S◦ state on the 777 nm/844 nm

line ratio as well as the behavior that leads to a strong dependence on electron density as

shown in Figure 7.

Besides cascade emission and metastable excitation, the rate of collisional relaxation

with heavy particles from the 3p 3P to the 3p 5P has been identified as an important pro-

cess at high pressure. Because of this, accurate quenching rates for the 3p 3P as well as

a branching ratio to the 3p 5P must be included in any model to accurately predict the

777 nm/844 nm line ratio at high pressure when heavy particles are present. In compari-
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son to the collisional-radiative model, not accounting for 3p 5P production by this method

accounts for approximately 7-10% average error in line ratio at atmospheric pressure.

Table 5. Mean error of extended corona models as compared to the 96 level CR model for synthetic air

Conditions Mean Error

Pressure (Torr) Dissociation Fraction Ext. Corona Ext. Corona w/ Casc.

0.001 0.10 57.9% 47.6%
0.001 0.01 61.6% 57.9%
1.0 0.10 22.8% 3.78%
1.0 0.01 10.3% 3.01%
760 0.10 27.7% 9.92%
760 0.01 13.9% 6.96%
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Figure 9. Energy level diagram of the first 7 levels of atomic oxygen showing the steady state total rates
to and from the 3s 5S◦ state.
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IV. Experimental Combined Actinometry of a stationary discharge

Given the highly reactive nature of atomic oxygen and its importance in plasma chem-

istry processes in air plasmas, determination of its absolute density has been an impor-

tant diagnostic. Argon actinometry seems to have emerged as the preferred technique for

determination of absolute atomic oxygen density or dissociation fraction in most cases,

likely due to its relatively simple experimental requirements when compared to more robust

methods such as laser absorption spectroscopy. The argon actinometry approach is accom-

plished by adding to a discharge trace amounts of argon, referred to as the ’actinometer’, of

which the concentration is known. Because emission intensities for lines which are dom-

inantly populated by electron excitation from the ground state species are proportional to

the ground state density, the ratio of an argon actinometer line to an appropriate oxygen line

is proportional to the ratio of ground state densities of argon and oxygen. Since the concen-

tration of argon is known and the ground state is the dominant state for both species, atomic

oxygen concentration can be determined [50,70,78–80]. The general technique makes use

of one of two strong infrared oxygen triplets (777 nm and 844 nm) and was first reported by

Walkup et al. in 1986 [70] , validated for use in low energy N2/O2 discharges by Granier

et al. in 1994 [78] and improved by Katsch et al. in 2000 [79] to include dissociative ex-

citation, which allowed this oxygen actinometry technique to be applied in higher power

laboratory plasmas with a significant fraction of electrons beyond the dissociative excita-

tion threshold (≈ 20eV ). The latter work was made possible by cross sections measured

by Schulmann et al. [64]. Additionally, Katsch et al. observed a significant discrepancy

in oxygen densities measured when the actinometer line is compared to the 844 nm multi-

plet (3p3P→ 3s3S◦) , and those determined using the 777.4 nm multiplet (3p5P→ 3s5S◦)

, with the former having better agreement with the more trustworthy laser spectroscopy

method. The authors proposed this discrepancy was due to dissociative excitation from the

common metastable O2(1∆) state. In the years since the development of these techniques,
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many authors have used both the 777 nm and 844 nm multiplets for actinometry and similar

measurements with positive results in a variety of laboratory discharges [50, 80–84]. Still

others have seen significant disagreement between the two actinometry ratios [49, 85–88].

It seems the general consensus is that both techniques can provide acceptable estimates of

absolute atomic oxygen density but that the 844 nm line is typically more reliable.

In this chapter dissociation fractions are compared as measured using both 844 nm and

777 nm actinometry, as well as actinometry using the relatively weaker 616 nm oxygen line

from the 4d 5D◦→ 3p 5P transition, in a medium pressure N2−O2 microwave discharge.

The reduced electric field or effective electron temperature (2/3 mean electron energy)

and subsequent electron energy distribution functions (EEDF) are found using the N2/N+
2

line ratio method [40, 44], as well as methods which use the actinometer and the oxygen

lines. Similar to many previous results [85–88], the results here show strong disagreement

between dissociation fractions predicted by the 844 nm multiplet (3p3P→ 3s3S◦) and those

predicted using the 777.4 nm multiplet (3p5P→ 3s5S◦) . To potentially resolve discrepancy,

it is proposed here that the discrepancies when observed are due to the relatively high

excitation rate of the 777.4 nm multiplet (3p5P→ 3s5S◦) from the metastable 3s 5S◦ state,

as evidenced by the cross sections determined by Barklem [18]. Given this assumption,

which is supported by our previous work [89] and a detailed collisional-radiative model, the

absolute 3s 5S◦ density and electron density can be deduced using a combined actinometry

approach. This 3s 5S◦ density as measured experimentally is presented and corresponding

electron densities predicted by a collisional-radiative model and a basic analytic model are

compared with values in literature for similar discharges. Results regarding the 616 nm

actinometry are inconclusive due to unknown quenching and metastable excitation rates,

though the line seems promising for future work. Additionally, its inclusion along with

the other two oxygen lines could be used to remove an additional unknown parameter,

thus removing the requirement of the argon actinometer. As a result of this paper it is
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suggested that the 777 nm actinometry technique may be unreliable if metastable excitation

is ignored and that a combined actinometry technique, which uses both common oxygen

lines along with the N2/N+
2 line ratio method, may be applicable which can simultaneously

determine the effective electron temperature, dissociation fraction, absolute 3s 5S◦ density

and electron density. Before describing our experimental results, it is necessary to detail

the many kinetic models used in this work. Sections 4.1 and 4.2 below describe the kinetic

schemes which support the experimental diagnostics.

4.1 Line Intensity Models

The actinometry approach and similar optical emission spectroscopy (OES) techniques

rely on the estimation of line intensities using simple analytic models where the list of im-

portant populating and de-populating processes has been greatly distilled. This work makes

use of four atomic lines and two diatomic nitrogen systems, all of which are dominantly

populated by electron collisional processes and primarily de-populated by optical emission.

A summary of the optical transitions and excitation mechanisms considered are given in ta-

ble 6. Populating mechanisms include direct impact electron excitation from the ground

state, dissociative excitation, cascade emission and metastable excitation. Collisional de-

excitation is considered for all oxygen and argon states as well as for both excited molecular

nitrogen states (section 4.1), all references and relevant rates for collisional de-excitation

are given in table 7.

Argon.

The argon 750.4 nm line
(
4p′ 2 [1/2

]
0→ 4s′ 2 [1/2

]◦
1

)
is generally considered to follow

the basic corona model [79], in which population only proceeds through direct electron

excitation from ground state argon and loss occurs only by spontaneous emission. In the

corona approximation, the line intensity of the 750 nm line is
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IAr750 = K(λ750)nArnek4p′
e A750τ4p′, (28)

where K(λ ) is the relative instrument calibration coefficient at the appropriate wavelength,

ne is the electron density, nAr is the density of the argon ground state, A is the Einstein

A coefficient for spontaneous emission, τ is the effective lifetime and ke is the electron

excitation rate from the ground state. In the absence of collisional quenching, the lifetime

is simply τ = 1/∑ f<i Ai f . If quenching is non-negligible, the effective lifetime is calculated

as

τ =
1

∑ f<i Ai f + ∑m qmnm
, (29)

where qm and nm is the rate coefficient and density, respectively, of quencher m, and the

sum is over all relevant species. Finally, a coefficient is defined which contains detectivity

and optical branching at λ as Pλ = K(λik)Aikτi [40], with radiative lifetimes of upper states

and Einstein A coefficients are given in table 1. The choice of electron excitation cross

section for the Ar
(
4p′ 2 [1/2

]
0

)
state can significantly change the actinometry results, as

discussed in Pagnon et al. [94]. For example, the cross sections from Chilton et al. [90]

have different shapes and higher maximum values than the cross section given in Katsch et

al. [79]. For this work the cross section given by Chilton et al. [90] is used, as it includes

more supporting data, such as comparisons with other results. In all cases in this work, the

excitation rates are calculated using EEDFs ( fe) generated by the well-known BOLSIG+

Boltzmann solver [11]. The primary input parameter for the BOLSIG EEDF calculations is

the reduced electric field (E/N). From the resulting EEDF, the effective electron temperature

(2/3 mean electron energy) is calculated and used in this work as a primary output and

label for each EEDF. The cross sections used as BOLSIG inputs were generated from the

LXcat database and contained cross sections for N2, O2, Ar and O at ratios consistent with
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experimental parameters and approximate dissociation fraction [95–99].

Oxygen.

For reference, a partial energy level diagram for atomic oxygen is given in figure 10. The

general approach for oxygen is similar to the corona model as described above with the

addition of dissociative excitation rate as proposed by Katsch et al. [79] and an electron

impact induced cascade emission rate derived from our previous work [89] (which uses the

direct electron excitation cross sections from Laher and Gilmore [7]). These Cascade exci-

tation cross sections for states relevant to this work are given in table 9. For the remainder

of this dissertation this kinetic situation is referred to as the extended corona model. The

line intensity for each of the oxygen lines is then

Iik = Pλ [nOne(ke + kcsc)+ nO2nekde] . (30)

Quenching of atomic oxygen states has been relatively well studied with O(3p 3P)

known from multiple works [2, 69] for all collisional partners relevant to this work (N2,

O2, Ar). It should be noted that this is another significant reason that actinometry using the

844 nm line is preferable, particularly in air plasmas. Collisional relaxation of atomic oxy-

gen metastables has also been investigated, with rates having been measured for the first

three excited states (1D, 1S, 3s 5S◦) on a wide variety of collisional partners [62, 67, 68].

However, no studies appear to exist for quenching of the 4d 5D◦→ 3p 5P line and quench-

ing rates for the 3p 5P state are only known for molecular oxygen as a collisional partner.

At a working pressure of 0.75 Torr the collisional branching for the O(3p 3P) state in air

is approximately 16% at 300K and 28% if scaled to a gas temperature of 900 K. Clearly

these rates are non-negligible, thus reasonable values are assumed for the unknown rates.

As a best guess, the quenching rate on N2 for the 3p 5P state is assumed to be the same

as the 3p 3P state, as in previous work [63, 89]. To account for uncertainties associated
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with this assumption, the lifetimes of the 3p 5P state are calculated with quenching rates

on N2 ranging from zero to the quenching rate of 3p 5P for molecular oxygen collisional

partners, which is the highest value of all the quenching rates relevant to this work, at a

value of 1.1× 10−9cm3s−1. This range of potential quenching rates are incorporated into

the general experimental uncertainty for dissociation fractions measured using the 777 nm

line. Because quenching rates for oxygen species on argon are typically small and argon

constitutes a relatively small partial pressure for this work, uncertainty regarding this rate

is considered negligible and it is assumed that rate is the same as that of the 3p 3P state.

For the 616 nm line originating from the 4d 5D◦ state, as there are no known rates, two

possible situations are tested: one in which the quenching rates are negligible and one in

which they are assumed equal to the 3p 3P values. Effective lifetimes for all states in this

work are calculated as described for argon in section 4.1 above, using the quenching co-

efficients in table 7 and scaled to the gas temperature approximated by the N2 SPS OES

method described in section 4.4 by a factor of
√

T/Tm, where T is the gas temperature

assumed here and Tm is the temperature at which the quenching rate was measured. This

factor arises from the assumption that the quenching rates carry a gas-kinetic linear depen-

dence on mean molecular velocity (k ≈ 〈v〉σ ) [100].

If in addition to the mechanisms in equation 30, the 3p 5P state is also produced by ex-

citation from the 3s 5S◦ state, the intensity of the 777 nm line can be expressed as

I777 = P777 [nOne(ke + kcsc)+ nO2nekde + n5Snekem] . (31)

Thus far there are 4 equations for line intensities (750 nm Ar, 615 nm O, 777 nm O and

844 nm O) and three line ratios can be written, each having the 750 nm argon line in the

numerator. The three actinometry ratios are then
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I750(Ar)

I616(O)
=

P750

P616

[
nArk

4p′
e

nO(k5D
e + k5D

csc)+ nO2k5D
de

]
, (32)

I750(Ar)

I844(O)
=

P750

P844

[
nArk

4p′
e

nO(k3P
e + k3P

csc)+ nO2k3P
de

]
, (33)

I750(Ar)

I777(O)
=

P750

P777

[
nArk

4p′
e

nO(k5P
e + k5P

csc)+ nO2k5P
de + n5Sk5P

em

]
. (34)

In the case of equations 32 and 33, one can solve for nO and get the argon actinometry

relations for both the 616 nm and 844 nm lines

n616
O ( fe) =

1
(k5D

e + k5D
csc)

[
I616(O)

I750(Ar)

P750

P616
nArk4p′

e −nO2k
5D
de

]
, (35)

n844
O ( fe) =

1
(k3P

e + k3P
csc)

[
I844(O)

I750(Ar)

P750

P844
nArk4p′

e −nO2k
3P
de

]
. (36)

A similar solution for oxygen density, given by the extended corona model, is typically

written for the 777 nm line as well, in which metastable excitation is ignored. Both cases

for the 777 nm solution, with and without metastable excitation, are examined in sections

4.4 and 4.5. Any two actinometry ratios following the extended corona model, as in equa-

tions 35 and 36 (or similarly equation 37 for a given metastable density), provide two

equations and two effective unknowns: atomic oxygen density (or equivalently dissoci-

ation fraction) and electron energy distribution function. A solution for both unknowns

can be arrived at for a given set of experimental ratios. This is accomplished by calculat-

ing BOLSIG EEDFs ( fe) for a wide range of feasible reduced electric fields and selecting

the fe (and corresponding effective electron temperature) which minimizes the difference

between oxygen densities predicted by each line ratio. With both fe and nO known, the

density of the 3s 5S◦ metastable state in equation 34 can be solved for, as shown below:
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n5S (nO, fe) =
1

k5P
em

[
I777(O)

I750(Ar)

P750

P777
nArk4p′

e −nO(k
5P
e + k

5P
csc)−nO2k

5P
de

]
. (37)
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Figure 10. Partial energy level diagram for atomic oxygen. Radiative transitions with Einstein A coeffi-
cients greater than 105 s−1 are shown. Oxygen lines used for actinometry are labeled with wavelengths
and shown in color. The O(2p4 3P) ground state, which is not shown, belongs to the triplet manifold,
therefore the lowest quintet state, O(3s 5S◦), is metastable.

Molecular Nitrogen.

In order to better compare the results of the 3 atomic oxygen lines, use the common

N2/N+
2 line ratio method [40,44] is used in order to make an independent determination of

the experimental fe. This method compares the relative excitation of the N2(C3Πu) state

to that of the N+
2 (B2Σ+

u ) state by observing the second positive system (SPS), N2(C−B),

and the first negative system (FNS), N+
2 (B−X). The line intensity models as used by Isola

et al. [44] are as follows

ISPS
(
v′,v′′

)
= PSPS

(
v′,v′′

)[
nX nek(X−C)

e

]
, (38)

IFNS
(
v′,v′′

)
= PFNS

(
v′,v′′

)[
nX nek(X−B)

e + n2
ek(X p−B)

e

]
, (39)
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where v′,v′′ are the initial and final vibrational quantum numbers, respectively and nX is

the density of N2(X1Σ+
g ). In the above equations it is assumed that N2(C3Πu) follows the

corona model i.e. population is dominated by electron excitation from N2(X1Σ+
g ) and loss

is dominated by spontaneous emission. In the case of N+
2 (B2Σ+

u ), population occurs by

both electron impact ionization from N2(X1Σ+
g ) and electron excitation from N+

2 (X1Σ+
g ),

while loss also dominantly proceeds through spontaneous emission. In the latter case,

assumed quasi-neutrality of the plasma along with the assumption that N+
2 (X1Σ+

g ) is the

dominant ion are used to substitute the density of N+
2 (X1Σ+

g ) with that of the electron

density in equation 39. To account for the likely non-negligible densities of oxygen and

argon ions, the slight correction that nN+
2
≈ ρN2ne is made, where ρN2 is the fractional

partial pressure of N2. A particular line ratio of interest is then

ISPS (v′,v′′)
IFNS (v′,v′′)

=
PSPS (v′,v′′)
PFNS (v′,v′′)

[
nX k(X−C)

e

nX k(X−B)
e + ρN2nek(X p−B)

e

]
. (40)

Quenching rates for both the N2(C3Πu) and N+
2 (B2Σ+

u ) are used to calculate the effective

lifetime of each state since they are available for both N2 and O2 collisional partners, rates

used are given in table 7. Equation 40 can be used to calculate the modeled band ratio for a

given BOLSIG EEDF ( fe) and electron density. Such ratios are calculated for a wide range

of possible EEDFs and corresponding reduced electric fields, solutions can then be selected

as any EEDF which corresponds to an intersection of the experimentally measured intensity

ratio and the modeled intensity ratio. In this way the N2(C3Πu) / N+
2 (B2Σ+

u ) band ratio can

be used to estimate the experimental EEDF and corresponding effective electron tempera-

ture for a given electron density. For sufficiently hot discharges with low electron densities,

the excitation route N+
2 (X1Σ+

g )→N+
2 (B2Σ+

u ) may be reasonably ignored as the ratio is only

weakly a function of electron density. However, for our expected electron density (up to

approximately 1012cm−3, based on previous studies), it was found that the excitation route

N+
2 (X1Σ+

g )→ N+
2 (B2Σ+

u ) is important and the mechanism presents the existences of two
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electron temperature solutions (one cold and one hot) for a given electron density. This situ-

ation arises due to the competition between the two production mechanisms of N+
2 (B2Σ+

u ),

found in the denominator of equation 40, and the large difference in activation energies of

the two processes. As such, the same relative intensity, IFNS, can be achieved in two cases;

one at low temperatures where the cross section for the N+
2 (X1Σ+

g )→ N+
2 (B2Σ+

u ) is domi-

nant and one for higher temperatures where the N2(X1Σ+
g )→N+

2 (B2Σ+
u ) route dominates.

This lack of a unique solution was similarly observed by Steves et al. [47]. Though the ra-

tio remains more sensitive to electron temperature than electron density for densities lower

than 1013cm−3, it is necessary to assume a reasonable electron density and further to re-

solve between the two electron temperature solutions. For this purpose, an electron density

of 8×1011cm−3 was assumed for N2/N+
2 results presented in section 4.4, the basis of this

assumption is discussed in section 4.5. Both possible corresponding electron temperature

solutions are presented in section 4.4.

Table 7. Quenching rates relevant to this work (10−10cm3 s−1). Gas temperatures from references [2–5]
were stated as 300 K or near room temperature, reference [6] was measured at 330 K, and all others
are assumed to have been measured at 300 K.

m\i N2(C3Πu)v=0 N+
2 (B2Σ+

u )v=0 Ar (4p′ 2 [1/2
]

0) O (3s 5S◦) O (3p 5P) O(3p 3P)

N2 0.132 [40] 8.84 [40] 0.32 [4] 0.35 [67] - 5.9 [2]

O2 3.0 [5] 10.45 [6] 7.6 [4] 2.2 [67] 11 [3] 9.3 [2]

Ar - - 0.16 [4] 2.9e-5 [2] - 0.21 [101]

4.2 Modeling O(3s 5S◦) density and electron density dependence

Analytic model.

A similar expression to those used in section 4.1 can be developed to estimate the

density of the metastable 3s 5S◦ state and its dependence upon electron density. Assuming
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production proceeds via direct electron excitation from the ground state, electron induced

cascade emission, and electron impact dissociative excitation while loss occurs dominantly

by collisional processes and weakly by spontaneous emission (as the radiative lifetime is

0.18 ms [33]), the steady state density of the 3s 5S◦ state can be approximated as

n5S (ne,nO,nO2,P, fe) = [nOne(ke + kcsc)+ nO2nekde]τ(P), (41)

where the lifetime, τ is calculated at the working pressure, P, and for the appropriate gas

composition. Collisional relaxation rates for relevant collisional partners are given in table

7. Alternatively, if the 3s 5S◦ density is known, equation 41 can be rewritten to solve for

electron density:

ne =
n5S

[nO(ke + kcsc)+ nO2kde]τ(P)
. (42)

Equation 42 above creates the potential for an experimental determination of electron den-

sity after actinometry methods have determined the oxygen ground state and metastable

densities. In addition to using the analytical model discussed above, the CRM as detailed

in chapter III can be used to predict the 3s 5S◦ steady state density for our experimental

parameters along with a particular value for electron density, ne. Because ne is the only un-

known and the 3s 5S◦ steady state density strongly depends on ne, ne can be determined by

minimizing the residual between the experimentally determined metastable 3s 5S◦ density

and the modeled 3s 5S◦ density. This process will be used and compared to the analytical

method described above (equation 42) and discussed in sections 4.4 and 4.5.

4.3 Experimental Setup

The discharge used in this work was a relatively simple microwave discharge which was

designed to operate in the medium pressure regime (0.1-10 Torr) and at high power. The
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general experimental apparatus is detailed in figure 19. Microwave power was generated

with a high power (6 kW) magnetron operating at 2.54 GHz and coupled into a WR340

rectangular waveguide (43 x 86 mm). The operating mode was the transverse electric

TE10 mode. Reflected power was managed and measured using an inline circulator and

a motorized 3 stub tuner was used for impedance matching. Forward of the circulator

and tuner, the plasma was generated in a fused quartz tube with an inside diameter of

1 cm and approximately 60 cm in length, which was placed through the waveguide and

was configured so that the electric field is at a maximum at its location and is parallel to

the tube axis. To accomplish this, a suitable hole was drilled through both of the wider

transverse sides a distance λ/4 from the waveguide end. The waveguide terminates into

copper plate. Copper tubing several centimeters in length was placed around the quartz

tubing on the outside of the waveguide in order to reduce microwave leakage, it also likely

contributed to the plasma generation efficiency. To further reduce leaking, copper mesh

surrounded the remainder of the quartz tubing, which still allowed for optical probing of

the plasma volume. The pressure, flow, and gas content were all regulated using three

mass flow controllers, calibrated for N2 (200 SCCM), O2 (101 SCCM) and argon (140

SCCM). Vacuum was provided by a small oil roughing pump. Pressure was monitored on

the inlet side of the tube with a convection gauge and on the vacuum side of the tube with

two capacitance manometers of different precision ranges (1 Torr and 1000 Torr full scale

ranges).

For the results presented below, the forward microwave power was set to 3 KW and the

average power absorbed by the system remained near 600 watts. The argon actinometer

was provided at a fractional partial pressure of approximately 5%. Operating pressure was

sustained at 0.75 Torr (100 Pa), which corresponds to a total gas flow rate of approximately

50 SCCM. The argon mass flow controller was operated at approximately 1.77% of full

scale which can introduce significant error when calculating gas partial fractions. To assess
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this error, the differences in required flow rate of a mass flow controller operating near 50

SCCM to sustain a pressure of 0.75 Torr with and without the 5% admixture of argon was

used. In this case, the error of the measurement is 1% of the set point or 0.5 SCCM. In

this way the argon mass flow controller’s set point was confirmed to be approximately 2.5

+/- 0.5 SCCM. Thus, the total error in argon number density is near 20%. This value of

uncertainty was propagated for calculation of O(3s 5S◦) and electron density uncertainty

but was not included in the comparison of dissociation fractions as any uncertainty would

affect the results for each actinometry ratio nearly uniformly. At this volumetric flow rate,

the linear flow speed is approximately 10 m/s with a residence time in the quartz tube

of approximately 60 ms. The microwave power source was enabled for a duration of 5

seconds for each acquisition and the spectra was time integrated for 3 seconds in the center

of the pulse duration to avoid any inconsistencies related to delayed plasma ignition or early

termination jitter. Total oxygen fraction was varied from nearly zero to approximately that

of the oxygen fraction in air (21%), though it was found that for oxygen fractions below

6% the signal to noise ratio for the 616 nm oxygen line was too low to extract reliable line

intensities.
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Figure 11. General experimental setup of microwave discharge and OES instrumentation

Spectroscopic data was collected with a 500 mm focal length Andor spectrograph with

a 1200 line/mm grating blazed at 500 nm and an Andor iStar 334t intensified CCD camera.

For the near UV data (350-450 nm), light was collected with an iris and a UV 50 mm

lens focused on a circular 100 µm optical fiber bundle. The fiber was coupled to the

spectrometer slit where the fibers are vertically aligned with the slit and ICCD counts were

vertically binned along the slit. For the red side of the spectrum, light was collected using

an iris and a two lens collimating system with an approximate focal length of 25 mm

incident on the same circular fiber bundle. In both cases the field of view of each optical

system constituted a cone approximately 2 mm in diameter crossing the radial center of

the quartz tube approximately 10 cm above the waveguide. Thus the measurements in

this experiment reflect the plasma conditions averaged along the light cone at an axial

location 10 cm above the waveguide. Separate collection optics were used to maximize

67



www.manaraa.com

optical efficiency in both regions and provide a relatively flat optical response for each. A

NIST traceable Deuterium/Halogen calibration lamp (Ocean Optics DH-3plus-CAL) was

used to calibrate the relative response of the complete optical systems. In the UV the

spectral response only changes by approximately 3% between 380 and 390 nm (near the

two lines considered). The blue/green portion of the spectra was also very flat, however

in the infrared the detectivity sharply decreases; the detectivity at 844 nm was found to be

approximately 25% the value of detectivity at 777 nm. Though, due to the strong nature

of the 777 nm and 844 nm lines, signal to noise was sufficiently high to overcome any

detectivity issues (approximately 30 for the 777 nm oxygen line). To test the accuracy of

the calibration, lines ratios from mercury/argon and mercury/neon lamps with shared upper

states were compared against their known Einstein A coefficient ratios. In all cases it was

shown that the calibration resulted in measured line ratios which agreed with the Einstein A

coefficient ratios with error less than the propagated Einstein A coefficient uncertainty and

the average error was approximately 10%. For this reason, an estimated uncertainty in line

ratios related to calibration of 10% is used for all of the results presented below. Atomic

line-widths using the spectroscopic system had a full width at half maximum (FWHM) of

approximately 0.1 nm and are considered to be instrument line-shape dominated.

4.4 Results

The general process is as follows: (1) the N2/N+
2 method is used to determine effective

electron temperature and gas temperature, (2) the 844 nm actinometry ratio is used to de-

termine dissociation fraction, (3) 777 nm actinometry is used to determine relative oxygen

3s 5S◦ density, and (4) analytic and CRM models of 3s 5S◦ density are used to determine

electron density.
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Actinometry Spectra and Line Intensities.

Figure 12 below shows an example of the collected atomic oxygen and argon spectra

for the gas composition N2/O2/Ar = 0.75/0.20/0.05. Satisfactory removal of significant

background spectra was achieved by collecting spectra in absence of the species of interest

and allowed for isolation and integration of each line. In the case of the argon spectra near

750 nm, the background is largely composed of second order grating diffraction from the

N2 SPS. Additionally, this methodology was effective in showing that the presence of the

argon actinometer had negligible influence on the remainder of the spectra. The resulting

subtraction and integration of the four actinometry lines for a range of molecular oxygen

partial fractions is shown in figure 13. Due to its relatively weak intensity, the 615 nm

oxygen line is scaled by a factor of 100. The estimated uncertainty in line intensities is

given by the error bars and represent an assumed 7% error in integrated line intensity as

well as the standard deviation of 3 separate measurements. Figure 13 shows that the argon

line is negligibly influenced by increased oxygen partial fractions while the oxygen lines

increase nearly linearly with increasing O2 partial pressure. Linear extrapolation of the

oxygen line intensities approximately approach zero for zero partial pressure of O2, with a

linear regression of the first 4 points (0.065- 0.12 O2 partial pressure) leading to integrated

intensities of −8, 8.6, and −29 Counts s−1nm for the 844 nm, 777 nm and 615 nm ×100

lines at nO2 = 0, respectively.

69



www.manaraa.com

605.0 607.5 610.0 612.5 615.0 617.5 620.0 622.5 625.0
0

20

40
O(4d 5D ) O(3p 5P)

742.5 745.0 747.5 750.0 752.5 755.0 757.5
0

400

800 Ar(4p 2[1/2]0) Ar(4s 2[1/2]1)

767.5 770.0 772.5 775.0 777.5 780.0 782.5 785.0
0

1000

2000

   
   

   
   

   
   

  I
nt

en
sit

y,
 I 

(C
ou

nt
s/s

)

O(3p 5P) O(3s 5S )

835.0 837.5 840.0 842.5 845.0 847.5 850.0 852.5
Wavelength,  (nm)

0

2000

O(3p 3P) O(3s 3S )initial spectra
background fit
isolated line

Figure 12. Oxygen and argon spectra, background, and corrected spectra for gas ratio N2/O2/Ar =
0.75/0.20/0.05. The backgrounds were experimentally measured in absence of either oxygen or argon.
These experimentally determined backgrounds were then scaled to fit the spectra containing the argon
and oxygen lines, though in most cases the scaling was minimal as the background spectra was highly
repeatable and not significantly impacted by absence of argon or oxygen. All curves are calibrated as
discussed in section 4.3.
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Figure 13. Integrated line intensities for each of the lines used in the 3 actinometry ratios as a function
of initial O2 partial pressure

Molecular Nitrogen Spectra and Line Intensities.

The line ratio method described in section 4.1 can be applied to any optically accessible

SPS and FNS bands if the appropriate cross sections are used. The v′→ v′′ = 0→ 0 band

of the FNS, which peaks near 391 nm, is typically used as it is often the strongest part of

the N+
2 (B−X) system. For this work, this band along with the v′→ v′′ = 0→ 2 band of

the SPS was used, due to its close proximity at 380 nm and its origination from the v = 0

vibrational state of N2(C3Πu). As discussed in section 2.3, full spectral simulations of both

the SPS and the FNS are used to extract accurate band intensities as well as rotational tem-

peratures and vibrational distributions. Figure 14 below shows an example of the spectral

simulation fit to experimental data. Figure 14 (b) shows the result of a least square fit with
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rotational temperature, vibrational distribution function and SPS/FNS ratio as optimization

parameters. The N2 SPS fits correspond to an average N2(C3Πu) rotational temperature of

Tr = 915 K with a standard deviation of 30 K. Rotational temperatures were not found

to be significantly sensitive to changes in O2 partial fraction. The resulting fit is used to

model the SPS v′→ v′′ = 0→ 2 band and the v′→ v′′ = 0→ 0 band of the FNS with the re-

mainder of the spectrum removed so that they may be integrated and their ratio calculated.

In addition to the fit parameters discussed above, the model accounted for a small amount

of radiation trapping. Though inclusion of radiation trapping as a fit parameter reduced fit

residuals for the SPS, it did not significantly change the integrated band intensities.
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Figure 14. Example of N2 SPS and FNS fitting: a) model fit of isolated band for integration and use in
line ratio, b) experimental data and least squares fit, c) residual of fit and model. Band heads for SPS
are labeled in black by v′→ v′′ and the FNS band heads are similarly labeled in red.

We report one significant irregularity in the data which does not agree with the SPS
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model or most spectra available in literature in which rotational transitions near J = 18 in

N2(C3Πu),v≥ 2 states are significantly diminished compared to the Boltzmann distribution

and those in other vibrational states. This irregularity exists for all bands examined (∆v =

1,2,3) and can be seen in figure 14 (b) most obviously near 369 nm and 392 nm. No

satisfactory explanation for this irregularity was arrived at, and it appears only two previous

works describe similar observations. In those cases the unusual spectra were theorized

to have been caused by rotational perturbations related to interactions of the C3Πu state

with C′′5Πu [38, 102]. However, it is not expected that this irregularity had any impact

our results as 1) the irregular distribution was fit (by modifying the relative density of the

J = 18 rotational state) and removed with a relatively low residual and 2) none of the

N2(C3Πu),v≥ 2 states were used in calculating line ratios.

The ratio of interest, ISPS(0,2)/IFNS(0,0) is shown in figure 15 below for the range of

fractional O2 concentrations considered for this experiment. The error bars in figure 15

again include both the standard deviation of 3 measurements as well as an assumed 5%

error for each integrated band intensity.
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Figure 15. Experimental SPS / FNS integrated band ratio as a function of O2 partial pressures.

Effective electron temperatures.

The SPS/FNS measured ratios as shown in figure 15 above can be used to estimate the

effective electron temperature using equation 40 and the process described in section 4.1.

However, as discussed in section 4.1, equation 40 yields two sets of solutions for the mea-

sured line ratios. Both solutions are presented in figure 16 below. Additionally, using any

2 of the 3 available actinometry ratios (as in equations 35 and 36) a simultaneous deter-

mination of both atomic oxygen density and effective electron temperature can be made.

Initially, the metastable excitation rate (3s 5S◦→ 3p 5P) was assumed to be zero in equa-

tion 34, and an actinometry equation identical to equations 35 and 36 was used for the

777 nm / 750 nm actinometry ratio. However, the 844 nm / 777 nm combined actinome-
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try yielded no meaningful solutions for the range of electron temperatures considered (0.7

eV - 7.5 eV) when metastable excitation was ignored, and for this reason is not included

in figure 16. Instead, Figure 16 below shows the results of effective electron temperature

determinations using both the N2/N+
2 method as well as the 844 nm / 777 nm combined

actinometry technique where metastable excitation of the 3p 5P state is included for 3 dif-

ferent metastable densities corresponding to n5S◦/nO = 2×10−4, 5×10−5, and 10−5. The

error bars in figure 16 represent the propagation of the uncertainty in measured line/band in-

tensities through the line ratio models, they do not include uncertainty introduced by cross

sections, Einstein A coefficients or quenching rates. The results show that if metastable ex-

citation is included at a fractional concentration relative to the total atomic oxygen density

of 2× 10−4, the combined actinometry approach provides reasonable agreement with the

hot N2/N+
2 results, while a value of 5×10−5 shows good agreement with the cold N2/N+

2

results. For the experimental conditions here, it is argued that the cold solution (2-3 eV)

more reasonably reflects the actual EEDF than the hotter solution branch (4-4.5 eV). This

argument is made on the following basis: (1) previous studies of similar N2-O2 microwave

discharges report electron temperatures of 2.21 eV (derived from E/N) [78], approximately

2 eV (OES) [47] and approximately 3 eV (double Langmuir Probe) [103], (2) the general

increasing trend of the cold temperatures with respect to partial fraction of O2 agrees with

both the actinometry results and the results of Ichikawa et al. [103], (3) actinometry based

on the high temperature solutions yields dissociation fractions which are much higher than

expected and which disagree with all previous work, and (4) in general high frequency

(MW) discharges are characterized by relatively low values of reduced electric field [40].

For the remainder of the results, the effective electron temperatures and associated EEDFs

as predicted by cold branch the SPS/FNS (N2/N+
2 ) method are used.

75



www.manaraa.com

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
O2 Initial Partial Pressure (fractional) 

1

2

3

4

5

Ef
fe

cti
ve

 E
lec

tro
n 

Te
m

pe
ra

tu
re

 (e
V)

 
777/844 Act. n5S/n3P = 2 × 10 4

777/844 Act. n5S/n3P = 5 × 10 5

777/844 Act. n5S/n3P = 10 5

N2 / N +
2  Cold Sol.

N2 / N +
2  Hot Sol.

Figure 16. Calculated effective electron temperatures using the SPS/FNS (N2/N+
2 ) method and com-

bined 844 nm / 777 nm argon actinometry with metastable excitation included for the 3p 5P state for
several fractional densities of 3s 5S◦.

Dissociation Fraction.

For a more direct comparison of the oxygen line models and the experimental results,

figure 17 shows the dissociation fraction predicted by argon actinometry of each of the

three lines. Dissociation fraction is defined here as nO/nO2 , where nO2 represents the initial

O2 density, prior to dissociation. The effective electron temperatures and corresponding

EEDFs used were those calculated using the SPS/FNS (N2/N+
2 ) method as discussed in

section 4.4 above. In this case, it can be assumed that the metastable excitation rate is zero

in equation 34. The standard 844 nm / 750 nm method yields dissociation fractions lower

than all other results, at an average of approximate dissociation fraction of 53%, while the
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777 nm / 750 nm actinometry predicts significantly higher dissociation at approximately

nO/nO2 = 103%, which disagrees with similar measurements in literature of microwave

discharges which range from 25–60% [47, 78, 104] to significantly lower in the case of

Ichikawa et al [103]. This disagreement of the 777 nm results with both previous work and

the 844 nm results, represents stronger 777 nm emission than is accounted for by electron

excitation channels included in the extended corona model (which ignores metastable ex-

citation). This result is consistent with the observations of Collart et al. [49]. The results

for the 616 nm / 750 nm actinometry are presented for both the case quenching is ignored

and in the case quenching rates are assumed to be equal to those of the 844 nm line. In

the case which quenching is ignored, the 616 nm based actinometry results are close to

those predicted by the 844 nm based actinometry, with reasonable agreement for O2 initial

partial pressures greater than 15%. When quenching rates equal to that of the 844 nm line

are assumed, results show good agreement with the standard 777 nm based actinometry

approach where metastable excitation is ignored. The error bars shown in figure 17 reflect

uncertainty in measured line intensities and the uncertainty in 3p 5P quenching coefficients

as discussed in section 4.1.

77



www.manaraa.com

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
O2 Initial Partial Pressure (fractional) 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5
Di

ss
oc

iat
io

n 
Fr

ac
tio

n 
(n

O
/n

O
2) 

616 nm Act., kq = k 3P
q

616 nm Act., kq = 0
777 nm Act.
844 nm Act.

Figure 17. Oxygen dissociation fraction predicted by argon actinometry of the 616 nm, 777 nm and
844 nm oxygen lines, using EEDFs corresponding to effective electron temperatures predicted by the
SPS/FNS (N2/N+

2 ) method. The rate kq refers to the total effective quenching rate.

O(3s 5S◦) and electron densities.

If it is assumed that the dissociation fraction predicted by the 844 nm actinometry in

figure 17 is correct and further assume that the disagreement of the 777 nm actinometry is

due to metastable excitation from O(3s 5S◦) , then the absolute density of O(3s 5S◦) can

be determined using equation 37. This process can be seen as identical to adjusting the

metastable density and its enhancement of the 777 nm line until the dissociation fraction

as predicted by the 777 nm actinometry in figure 17 agrees with the results of the 844

nm actinometry ratio. Additionally, using both the analytic model (equation 41) and the

collisional-radiative model as discussed in chapter III, the electron density can be deter-
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mined for each value of O(3s 5S◦) density. Figure 18 (a) shows relative O(3s 5S◦) concen-

trations as determined using this combined actinometry approach while 18 (b) shows the

corresponding electron densities as predicted by each model. The relative O(3s 5S◦) con-

centration has a similar increasing trend with respect to O2 partial pressure as the electron

temperatures and dissociation fractions. The electron densities, as determined using the

analytic model, show excellent agreement for all initial partial pressures of O2 with the val-

ues obtained using the CRM. This indicates that the extended corona model is a complete

model for these operating conditions and more complex mechanisms such as electron ex-

citation to the 3s 3S◦ and 3p 3P states, which could introduce a more complex dependence

on electron density than the one considered by the basic analytic model and equation 42,

are not important for these conditions.
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Figure 18. Concentration of O(3s 5S◦) relative to the ground state O(2p4 3P) as determined from exper-
imental actinometry and corresponding electron densities as calculated using the analytic and CRM
models.

In lieu of an accurate in situ electron diagnostic for comparison with the measured

electron densities, table 8 below provides a summary of electron densities as determined for

similar microwave discharges in literature as well as the values determined in this work for

both models. Values determined here are reasonably consistent with the literature values,

and though they are higher than the other experimental results, they are within experimental

uncertainty of the 2 values obtained experimentally at 1 Torr, [78, 103], which is expected

as those measurements have discharge pressures and powers most similar to this work.
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Table 8. Electron densities determined for similar microwave (2.54 GHz) discharges in literature and
for this work. Ranges of values for some measurements are based on spatial variations while others
contain only uncertainty. Measurement types for literature values include microwave interferometry
(MWI), double Langmuir probe (DLP), multipole resonance probe (MRP) and two models. Values
from this work represent the mean electron density and mean uncertainty over the range of partial
oxygen fractions considered.

ne (1011cm−3) Gas Comp. P (Torr) Power (W) Meas. Type Ref.

(11.4±5.0) N2/O2/Ar 0.75 600 CRM/Act. this work

(10.7±4.7) N2/O2/Ar 0.75 600 Analytic/Act. this work

(6±1) O2 1.0 600 MWI [78]

(5±2) N2/O2 1.0 500 DLP [103]

(13±7) O2 7.5 400 Model [105]

(47.5±10.5) N2/O2 2.25 129 Model [106]

(1.25±0.26) N2(Trace)/O2 0.19 600 MRP [47]
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4.5 Discussion

As observed in previous work [85–88], the results above show that the standard 2 mech-

anism excitation model (extended corona) for the O(3p 5P) state does not agree with the

same model for the O(3p 3P) state, for some experimental conditions including those con-

sidered here. This is evident due to the lack of agreement of dissociation fractions (figure

17) as well as electron temperatures predicted by the N2/N+
2 method and those predicted

using a 2 ratio combined actinometry approach using the 844 nm / 750 nm and 777 nm

/750 nm ratios which ignores metastable excitation. The inclusion of metastable excita-

tion from the O(3s 5S◦) state, using cross sections calculated by Barklem [18], mitigates

this disagreement and allows the 2 actinometry ratios along with the N2/N+
2 method to

be utilized to simultaneously determine effective electron temperature, dissociation frac-

tion, and O(3s 5S◦) density. Furthermore, a basic analytic model for O(3s 5S◦) densities

(equation 41) shows excellent agreement with the relatively complete oxygen CRM and

allows for direct calculation of electron density using effective electron temperatures, dis-

sociation fractions, and O(3s 5S◦) densities as determined from the combined actinometry

technique. The resulting electron density as determined using this method and the CRM

are relatively consistent with other values in literature for similar microwave discharges.

Together, these results strongly suggest that metastable excitation from O(3s 5S◦) is an

important mechanism when using the 777 nm line for actinometry for our conditions and

likely for the conditions used by previous authors who observed significant disagreement

between methods using 777 nm and methods using the 844 nm line. These results reflect

the same behavior observed in chapter III, where the importance of metastable excitation

in sufficiently ionized discharges was confirmed using the oxygen CRM.

For simplicity, the results above were calculated and presented in a linear fashion, elim-

inating one unknown at a time. Because of this, it was necessary to assume an electron

density before calculation of effective electron temperatures using the N2/N+
2 method. Ini-
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tially, an average value from literature was assumed and used to calculated effective elec-

tron temperature using the N2/N+
2 method. Those subsequent EEDFs were then used for the

combined actinometry technique, which in turn yielded a new value for electron density.

This created an iterative process composed of many complete calculations of all parameters

which converged to a final value of 8×1011cm−3. Though this value is slightly lower than

the average value obtained using the final actinometry results, it falls within the uncertainty

of the actinometry results and higher densities do not correspond to solutions to equation

13 for measured N2/N+
2 intensity ratios. Thus, the value (8× 1011cm−3) represents the

approximate average intersection of solutions to the N2/N+
2 equation and the actinome-

try equations for our experimental line ratios and ranges of uncertainty. Though a direct

approach which simultaneously solves the actinometry and N2/N+
2 equations for all un-

knowns alleviates the need to initially assume any parameters, it would be less illustrative

of the conclusions presented here.

The working pressure and electron density are crucial to the applicability of using this

combined actinometry approach to determine electron density. As electron densities in-

creases or pressure decreases, the lifetime of 3s 5S◦ becomes dominated by electron pro-

cesses and collisional quenching with neutrals become negligible. In this case the electron

density dependence cancels and thus the technique is no longer sensitive to electron den-

sity. For a dominantly O2 discharge at a pressure of 1 Torr, a gas temperature of 300 K and

an electron temperature of approximately 5 eV, the loss rate for electron depopulating pro-

cesses of the 3s 5S◦ state becomes comparable to the quenching rate at ne ≈ 4×1013 cm−3.

Therefore for these parameters the upper limit in terms of sensitivity is near ne≈ 1014 cm−3

and approximate upper limits at different pressures can be found by scaling the electron

density by the working pressure in Torr.

Using the available spectroscopic data along with quenching rates equal to those of the

844 nm line, actinometry based on the 616 nm line (4d 5D◦→ 3p 5P ) does not agree with
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the generally trusted 844 nm line and model and instead shows good agreement with the

777 nm based actinometry for which metastable excitation of the 3p 5P state is ignored.

Though in the case where quenching of the 616 nm line is ignored, the dissociation frac-

tions show reasonable agreement with the 844 nm based actinometry when O2 partial pres-

sures approach that of air. This result suggests that either the actual quenching rates for the

4d 5D◦ state are slow or there is an additional production mechanism, such as metastable

excitation, which is not included in the model, as the line is significantly stronger than

the actinometry equations predict for dissociation fractions and electron temperatures mea-

sured here and in other studies. Independent measurement of either quenching rates or the

metastable excitation rate would be required to make further conclusions regarding the im-

portance and likely values of those rates for the experimental conditions used here. The 616

nm / 750 nm does however show a strong correlation to atomic oxygen density, similar to

that of the other two often used ratios. If an accurate model for the relative line intensity of

the 616 nm is realized, the additional oxygen line could be used to eliminate an additional

unknown and remove the need for the argon actinometer. This would allow a comprehen-

sive OES technique using only optically accessible lines of air which could simultaneously

determine electron temperature, electron density and dissociation fraction. With regard to

the observed disagreement of the 777 nm actinometry results using the extended corona

model (which ignores O(3s 5S◦) metastable excitation), it is possible that other factors,

besides the metastable excitation route considered here, contribute to the observed dis-

agreement. In the following sections the influence of three such potential mechanisms is

examined in more detail; collisional quenching on oxygen atoms, dissociative excitation

from the O2(1∆) and uncertainties related to selected EEDFs.

84



www.manaraa.com

Quenching on atomic oxygen.

The results here, as well as previous work, show that for medium pressure microwave

discharges, molecular oxygen is highly dissociated, and a value of approximately 53% was

measured here. Despite this, the gas composition used to calculate quenching coefficients

does not reflect either the changes to molecular oxygen density or the presence of oxygen

atoms as a result of the dissociation. With regard to quenching rates, the rates for quenching

of the 3p 3P and 3p 5P states (as well as most others) on atomic oxygen are not available in

literature. Thus the overall approximation made here is that total quenching from oxygen

atoms is equal to the quenching from molecular oxygen which it replaces. Two reasonable

limits can be assumed in order to estimate the error introduced by this approximation for

20% O2 partial pressure. In one limit the quenching rates on atomic oxygen are negligible

compared to those of the other species. In this case the lifetimes of the 3p 3P and 3p 5P

states would increase by only approximately 2%. In the other limit the quenching rates on

atomic oxygen could be double the quenching rates on molecular oxygen. In this case the

lifetimes of the 3p 3P and 3p 5P states would decrease by approximately 6%. In both cases

the change in lifetimes is small compared to remainder of the experimental uncertainty, and

even in the case where the predicted dissociation fraction of the 3p 5P based actinometry

decreases by 2% and the result from the 3p 3P based actinometry increases by 6%, the two

results are still in significant disagreement and outside of the experimental uncertainties

as given in figure 17. Thus, for our conditions, the effect of unknown quenching rates on

atomic oxygen collision partners is deemed negligible. This is largely because O2 at most

accounts for 20% of the total gas composition. However, in a highly dissociated discharge

in which O2 is the dominant species these unknown rates may impact the applicability of

these actinometry techniques.
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Metastable excitation from O2(1∆) .

It was proposed in [79] that the discrepancies between the 777 nm and 844 nm acti-

nometry approaches could be due to metastable dissociative excitation from the long lived

O2(1∆) state which can exist at significant fractions of the total O2 density. However,

due to the unavailability of excitation cross sections from the O2(1∆) state, estimating the

influence of its presence is difficult. One simple estimate can be made by assuming the

dissociative excitation cross sections from the O2(1∆) are simply those of O2(X) with an

appropriate shift in excitation threshold (≈ 1 eV ). This assumption carries some degree of

validity based on the similarity of potential energy curves of the O2(1∆) and the O2(X)

states. This approximation however only results in a slight decrease in total dissociative

excitation to all states as including O2(1∆) at any significant fraction only decreases total

dissociative excitation from O2(X). Additionally, in order to model the experimentally ob-

served larger than predicted 777 nm / 844 nm ratio, the dissociative branch would need to

increase as dissociative cross sections for the 3p 5P state are nearly double that of the 3p 3P

state [64]. If any O2(1∆) influence on the 844 nm line is ignored, the necessary magnitude

of the excitation cross section for the dissociative channel from O2(1∆) to 3p 5P to solve

the discrepancy can be estimated. In the case O2(1∆) constitutes an unreasonably large

fraction of the total O2 density (50% ), the cross section would need to be nearly 6 times

greater than that of the dissociative path from O2(X) with a peak value of approximately

2.6×10−17 cm2. Given these considerations and the fact that inclusion of the atomic oxy-

gen 3s 5S◦ metastable excitation at 3s 5S◦ densities consistent with our modeling provides

good agreement between the actinometry methods, it seems unlikely that metastable disso-

ciative excitation from O2(1∆) is an important process for our conditions.
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EEDF related uncertainty.

The EEDFs used for actinometry here should be considered a ’best fit’ of the experi-

mental EEDF based on N2/N+
2 method and the associated cross sections of that technique

as well as the inputted cross sections and other parameters used to calculate the BOLSIG

EEDFs. It is possible that the EEDFs used here may vary significantly from the actual

EEDFs. In particular it is possible there exists a stronger high-energy tail which could dis-

proportionally populate the 3p 5P state and result in more 777 nm emission due to the strong

dissociative excitation cross section for the 3p 5P state and its high activation energy. Thus,

the discrepancies observed here could be related to a missing population of high energy

electrons which are responsible for the additional 3p 5P excitation. However, due to the

strongly dissociated nature of this and similar microwave discharges, excitation of 3p 5P

proceeds dominantly via electron excitation from the ground state and only weekly via

dissociative excitation. Additionally, the presence of a high energy tail (with E < 50 eV )

does not actually lead to a reduction in the measured dissociation fraction and instead leads

to an increase in nO/nO2 , as such a tail also strongly increases the argon excitation rate,

which the measured density, nO , directly depends on. This is because the cross section for

excitation of the 750.4 nm line
(
4p′ 2 [1/2

]
0→ 4s′ 2 [1/2

]◦
1

)
remains strong for high ener-

gies and greater than the 3p 5P dissociative excitation cross section until approximately 50

eV. And since the 777 nm results already constitute a likely unreasonably high dissociation

fraction, as compared to previous results and the 844 nm results, the presence of a stronger

high energy tail which increases measured dissociation fraction is unlikely and would re-

quire significant electron populations with E > 50 eV . Furthermore, similar disagreement

between 777 nm and 844 nm results which include dissociative excitation, and likely con-

stitute a variety of different EEDFs, have been observed in previous work [85–88]. Thus,

the observed disagreement is unlikely to have been caused by uncertainty related to EEDFs

and it seems that the disagreement exists for a wide range of possible EEDFs and there-

87



www.manaraa.com

fore can only be accounted for by the inclusion of an additional mechanism, such as the

metastable route proposed here. However, it is noted that like most OES methods, the accu-

racy of our resulting plasma parameters such as dissociation fraction, electron temperature

and electron density strongly depend on the questionable accuracy of the cross sections,

EEDFs, and other rates used for this work and thus contain significant uncertainty, beyond

the experimental uncertainty given in figures, until further validation can be performed.
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Table 6. Populating processes and radiative transitions considered for this work; cross section refer-
ences are given for excitation rates. The index i refers to the oxygen state of interest and is replaced by
the appropriate term symbol in the text, while the index j refers to arbitrary oxygen states with j 6= i,
except in the case of the oxygen dissociation reaction, in which both fragments could potentially be the
same state.

Argon

symbol reaction ref.

k4p′
e Ar(3p6 1S)+ e−→ Ar

(
4p′ 2 [1/2

]
0

)
+ e− [90]

A750 Ar
(
4p′ 2 [1/2

]
0

)
→ Ar

(
4s′ 2 [1/2

]◦
1

)
+ hν(750.4 nm) [33]

Oxygen

symbol reaction ref.

ki
e O(2p4 3P)+ e−→ Oi + e− [7]

ki
de O2 + e−→ Oi + O j + e− [64, 91]

ki
csc O(2p4 3P)+ e−→ Oi + e−+ Σ jγ [7, 89],Table 9

kem O(3s 5S◦)+ e−→ O(3p 5P)+ e− [18]
A616 O(4d 5D◦)→ O(3p 5P)+ hν(615.7 nm) [33]
A777 O(3p 5P)→ O(3s 5S◦)+ hν(777.4 nm) [33]
A844 O(3p 3P)→ O(3s 3S◦)+ hν(844.6 nm) [33]

Molecular Nitrogen

symbol reaction ref.

k(X−C)
e N2(X1Σ+

g )+ e−→ N2(C3Πu)v=0 + e− [40]
k(X−B)

e N2(X1Σ+
g )+ e−→ N+

2 (B2Σ+
u )v=0 + 2e− [1, 40, 92]

k(X p−B)
e N+

2 (X1Σ+
g )+ e−→ N+

2 (B2Σ+
u )+ e− [93]

A380 N2(C3Πu)v=0→ N2(B3Πg)v=2 + hν(380.4 nm) [1]
A391 N+

2 (B2Σ+
u )v=0→ N+

2 (X1Σ+
g )v=0 + hν(391.4 nm) [1]
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V. Spectroscopic Characterization of a Supersonic Microwave
Discharge

The final focus of this work regards the application of the knowledge gained and tech-

niques developed in chapters III and IV to a bench top laboratory supersonic flowing dis-

charge which can be seen as a basic laboratory model of high-Mach vehicles plasma sheath,

similar to the laboratory modeling of atmospheric reentry of previous work [42]. Indeed

the highly ionized and dissociated nature of the discharge along with the supersonic veloc-

ities capture many of the fundamental characteristics of these environments. Though these

laboratory models differ in many ways from operational environments, such as the fact that

discharge is driven electronically rather than by heating and gas-kinetics, they offer an in-

vestigative medium which would otherwise be significantly cost-prohibitive in most cases.

In the sections that follow, the application of OES techniques similar to those used in chap-

ter IV is investigated for the case of a supersonic flowing discharge and by extension the

potential feasibility of using such methods in the plasma sheath of a high Mach vehicle.

5.1 Experimental Setup

The basis of the setup used for this work is a blown quartz tube with a 2 mm throat

de Laval nozzle at its approximate center placed through a WR340 microwave waveguide,

with the convergent section of the nozzle just upstream from the waveguide. On the down-

stream side of the nozzle, vacuum is provided by 3 rough pumps having a combined pump

rate of approximately 20 m3/hour and buffered by a 0.20 m 3 chamber which attains an

ultimate pressure of approximately 1 mTorr with the aid of a turbo-molecular pump. On

the inlet side of the nozzle, a 200 SCCM full scale mass flow controller and a 140 SCCM

mass flow controller provide air and argon, respectively. For all results presented below the

air flow is set to 200 SCCM while the argon is included at 10 SCCM (95% Air, 5% Argon).

The mass flow controllers are separated by a small volume from a fast solenoid vacuum
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valve with an open time of approximately 50 ms, which is incident upon the quartz tube

and contained nozzle. A 6 KW 2.54 GHz magnetron excites the discharge and operates at

approximately 600 Watts of absorbed power. To aid ignition of the discharge, a UV lamp

is placed near the bottom of the waveguide. A copper plate terminates the waveguide, but

contains a vertical cutout where the only microwave shielding is a copper mesh, which al-

lows full viewing of the discharge tube. This copper mesh does influence the imaging as

discussed in section 5.2 below. The resulting emission is imaged upon a 1/2 meter spectro-

graph with an Andor iStar 334t ICCD detector. A schematic of the full experimental setup

is given in figure 19

Figure 19. General experimental setup of microwave discharge and OES instrumentation

The design Mach number of the nozzle is M= 3.4 and is based on isentropic flow re-

lation given in equation 14, at Mach 3.4, equation 14 yields a ratio of A/A∗ ≈ 6.5. Due

to the flow limitations of our vacuum pumps, a relatively small throat diameter is chosen.

Based on this consideration and the design area ratio, the throat diameter was fabricated

at D∗ = 2 mm and the exit diameter was subsequently fabricated at D= 5 mm. Using a

similar isentropic relation, the expected pressure ratio as measured experimentally can be
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estimated as Pi/P f ≈ 71. The designed profile of the nozzle is given if figure 20, though

the actual profile consists of more continuous and rounded changes in diameter due to the

glass blowing process. Figure 21 shows the actual nozzle with and its approximate profile.

The overall profile is achieved by fusing several small quartz tubes together which have

different diameters which correspond to the tube, throat, and exit diameters. An important

difference in design and actual nozzle profile is the steep exit angle as the divergent section

approaches a diameter of 5 mm. Because the exit angle of the nozzle is steep (approxi-

mately 80 degrees) and significantly greater than the an appropriate Prandtl-Meyer angle,

it is expected that the flow separates from the tube wall and effectively is a free expan-

sion until further downstream where the supersonic flow meets the wall. This situation is

complex and given the unique profile would likely require the application of computational

fluid dynamics (CFD) to properly solve. Further, if the non-isentropic effects caused by the

incident microwave power were also considered the problem may even require treatment

beyond standard CFD tools. Such studies of this complex flow are outside of the scope

of this work and thus descriptions of flow mechanics are largely limited to predictions of

Mach numbers based on measured pressure ratios.
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Figure 20. Designed Nozzle Profile

Figure 21. Actual approximate Nozzle Profile
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5.2 Results

Figure 22 below shows an example of the pressures measured using the two Baratrons

as shown in figure 19 as well as their ratio. The microwave power is incident until ap-

proximately 3.75 seconds when it is turned off; the solenoid valve initiates the flow near

t=0 seconds. The flat portion of the curve represents pressures outside of the measureable

range for the combined Baratron and oscilloscope acquisition setup. After the saturation

period, 3 distinct flow regimes exist, which are separated by vertical dotted lines in figure

22. The first regime, from 0.5 to 1.3 seconds, corresponds to the discharge igniting but

being limited to beyond the throat and downstream. The second regime, 1.3 to 2.8 seconds,

corresponds to the discharge existing in both the throat and the downstream tube. The third

regime, t > 3.6 s, corresponds to the discharge being off. In the first and third cases the

pressure ratio is approaching a value of approximately 10, while in the second case has a

pressure ratio greater than 20. These ratios are significantly lower than the design pressure

ratio as in equation 15, which predicted a ratio near 71 for a Mach 3.4 flow. This result

is likely primarily due to the flow being under-expanded and separated from the tube wall

as discussed above. Additionally, the discharge seems to be contributing strongly to the

flow conditions, as evidenced by the two unique flow regimes, as discussed further below

in section 5.2.
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Figure 22. Time dependence of upstream (A) and downstream pressures (B), as well as the pressure
ratio (C), for a typical discharge on and valve opening pulse.

Atomic Oxygen Imaging.

In order to capture the spatial distribution of the discharge as a function of time, a

spectroscopic imaging system was used which uses optical band-pass filters which were

custom fabricated to specifically image three atomic oxygen lines, namely the two strong

777 nm and 844 nm lines as well as the weaker 616 nm. The optical setup is similar to the
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general setup in figure 19 with the addition of the appropriate optical filter. The imaging

was performed through the spectrometer, with the slit opened fully and the grating at its

zeroth order position acting effectively as a mirror. This method was chosen to minimize

changes in the setup between acquisitions and calibrations which used spectrally dispersed

images and those which were direct filtered images with horizontal spatial resolution, as

in the oxygen line images shown and discussed below. The two strong infrared oxygen

lines (777 nm and 844 nm) are particularly good candidates for spectroscopic imaging as

they are among the strongest lines in the entire optical spectra of air and additionally carry

strong dependence on important plasma parameters. Figures 23 and 24 show examples of

the 3 discrete spectral lines as imaged during the first and second flow regimes, as discussed

above. Images were collected as kinetic series for 3 separate experiments each having one

of the 3 Oxygen line filters in place. The camera gating was provided to an oscilloscope

in order to synchronize the pressure measurements with the imaging data. Figure 23 below

shows an example of the emission distribution for each of the lines, and corresponds to the

first regime where the discharge is more diffuse and limited to the section downstream from

the throat. It is noted that the presence of a copper mesh over the window introduces strong

artifacts in some of the data which can be seen as periodic structure in both the radial and

axial dimensions. This structure is most apparent in figure 25 and does not reflect actual

variation in the discharge structure. One noticeable real feature is the somewhat asymmetric

distribution of the emission in the first flow regime, and the existence of a darker region on

the right side of the tube. This region may correspond to the supersonic jet region, as the

exit of the nozzle has a diameter similar to the size of the darkened region. The discharge

ignites as shown in figure 23 when the pressure measured by the downstream Baratron falls

to an average of approximately 6.5 Torr. Previous work using this microwave source as a

stationary discharge consisting of a nearly identical setup showed that the discharge fails

to ignite for pressures above approximately 3 Torr. This suggests that the actual pressure in
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the ignited region is likely approximately half of the pressure as measured downstream.
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Figure 23. Excited Oxygen Spectroscopic images integrated from 0.7 to 0.95 seconds
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The most interesting result of these images and the pressure data is the drastic change in

upstream and downstream pressures as well as the resulting pressure ratio when the throat

of the discharge ignites, as show in figure 24. This would suggest that the discharge at

the throat significantly controls the flow as the pressure ratio increases to nearly double

that of previous times. In the case which the plasma is formed in the nozzle throat, the

strongly heated discharge acts as an obstacle for the cold flow which creates a pressure

increase and velocity decrease before the throat [107]. Thus fewer particles enter the nozzle

region and flow downstream [107]. Additionally, as boundary layer thickness is dependent

on gas temperature (via viscocity), changes in local gas temperature caused by the local

differences in microwave energy deposition into the plasma create dynamic boundary layers

[107]. These two effects can be seen as responsible for the changes in pressure ratio for

the different discharge regimes as well as contributing to the departure of the pressure

ratio from that of the designed operating ratio and are directly related to the topic of plasma

flow control applications which exploit similar effects, such as boundary layer modification

[108]. Also observable in figure 24 is the clear appearance of a jet exiting the nozzle which

appears to approach the same path as the darker region near +2 mm as observed in figure

23. The length of the flow for which the velocity is supersonic beyond the throat exit (or

the location of the shock), can be estimated using the experimentally determined empirical

relationship zs = 0.67dex
√

Pf /Pi [53], where zs is the location of the shock relative to the

exit plane and dex is the exit diameter. For a pressure ratio of Pf /Pi = 20 and a 5 mm exit

diameter, the supersonic region extends to approximately 10 mm, this distance corresponds

to the approximate characteristic length of the jet in figure 24.
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Figure 24. Excited Oxygen Spectroscopic images integrated from 2.0 to 2.5 seconds

Using the results of figure 24, a calibrated ratio of 777 nm to 844 nm lines can be found,

as discussed in great length in chapter III. This ratio is given in figure 25. It is possible,

based on the results of chapters III and IV, to develop an approximate analytical form of

the line ratio in figure 25 which gives insight into its physical meaning. If it is assumed

that the dissociation fraction in the case of the supersonic flow is near that of the subsonic

case as measured in chapter IV (53%) , production of 3p 5P and 3p 3P by dissociative

excitation accounts for a small percentage of the total production (< 10%), and therefore

can be reasonable ignored as an approximation. In this case the line ratio can be expressed

as
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I777(O)

I844(O)
≈ P750

P844

[
nO(k

5P
e )+ n5Sk

5P
em

nO(k3P
e )

]
, (43)

where ke includes the cascade rate. As the dissociative excitation for production of 3s 5S◦

was also small in chapter IV, at a branching of approximately 6.7%, its steady state density

can be approximated as

n5S ≈
nOnek

5S
e

Nk5S
q

, (44)

where N is the gas number density and k
5S
q is the total effective quenching rate. Substituting

equation 44 into equation 43, the ratio is

I777(O)

I844(O)
≈ P777

P844

[
k

5P
e + nek

5S
e k

5P
em/(Nk

5S
q )

k3P
e

]
, (45)

thus for a given EEDF, the line ratio is proportional to the ionization fraction of the dis-

charge, ne/N. In the case where both the local EEDF and the local gas density are known,

figure 25 could be converted to an approximate map of electron density. Additionally, if

variation in local EEDF is small, figure 25 is in fact proportional to ionization fraction.

Though, because it is expected that the number density is dynamic along the flow, it’s rea-

sonable to assume that EEDFs are also dynamic, as they depend directly on E/N. However

if coupled with the N2/N+
2 or similar method as was done in chapter IV, the two techniques

together could provide a powerful combined tool for direct imaging of electron density. A

similar approach is briefly explored in the following section.
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Figure 25. Imaged intensity ratio of 777 nm and 844 nm lines for the diffuse flow regime (I), near t=1.0
seconds and for the regime which has the throat ignited (II), near t=2.0 seconds. Note that the periodic
structure in both dimensions is due to copper mesh covering window.
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N2 and Argon Spectra.

Similar results were obtained for the ∆V=2 bands of the N2(C−B) (365 nm to 380 nm)

as well as the spectrum near 750 nm which contains the 4p′ 2 [1/2
]

0→ 4s′ 2 [1/2
]◦

1 argon

line as well as the 3p 4S◦ → 3s 4P triplet nitrogen triplet, though rather than the filtered

spectral imaging presented above, the center of the nozzle and discharge tube was imaged

onto the spectrometer slit and the horizontal camera axis provided spectral resolution while

the vertical axis gives axial spatial resolution of the discharge. Figure 26 below shows the

total integrated intensity of the first three ∆V=2 bands as well as the argon and nitrogen

lines as a function of position from the nozzle. These results were obtained in a flow situa-

tion similar to the second flow regime as discussed above, though they were integrated over

approximately 3 seconds. If strong variations in the electron energy distribution function

(EEDF) and subsequent electron excitation rates along the flow axis are neglected, the total

integrated N2(C−B) emission as in figure 26 can be approximated as directly proportional

to the product of electron density and gas number density. All of the lines have a strong

maximum near the throat exit which sharply declines to a minimum near 7 mm and then

make a gradual recovery along the tube, likely reflecting the recovery in pressure far down-

stream from the nozzle. With regard to the atomic nitrogen emission, the line carries an

intensity relative to the argon intensity similar to that of the subsonic flow in chapter IV,

suggesting that N2 remains similarly dissociated. The ratio of nitrogen 747 nm emission to

that of the N2(C−B) ∆V=2 bands increases nearly linearly from 2 to 25 mm, which could

suggest that the dissociation fraction increases along the flow.

102



www.manaraa.com

1

2

3

4

5

6
1e13 N2(C B), v v + 2 Bands near 365-380 nm

v = 0
v = 1
v = 2

0.5

1.0

1.5

2.0

2.5

In
teg

ra
ted

 In
ten

sit
y 

(a
rb

.)

1e12 Nitrogen 746.87 nm line
4S3/2

4P5/2

0 10 20 30 40
Distance from throat exit (mm)

2

3

4

1e12 Argon 750.4 nm line

4p 2[1/2]0 4s 2[1/2]1

Figure 26. Axial spatial distribution of (a), the total integrated intensity of the ∆V=2 bands of the
N2(C−B) and (b), the fraction of the total N2(C−B),∆V=2 emission from the v′ → v′′= 0→ 2.

Figure 27 below shows 3 examples of the near UV N2(C−B), ∆V=2 spectrum for po-

sitions corresponding to (a) the emission maximum along the axis or within the throat, (b)
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at the emission minimum beyond the throat, and (c) far downstream. There are two readily

apparent changes in these spectra. First, the fraction of the ∆V=2 emission arising from

v′ = 1′ decreases slightly by about 6 % from its initial relative value at the throat, this is

apparent in the differences between figure 27 (a) and (b). This could be interpreted as either

a shift in vibrational temperature of the N2 ground state or a change in the excitation route

of N2(C). The second difference between the spectra are apparent changes in line-shape

with the line-shape being broader near the nozzle. All have rotational temperatures near

approximately 1500K for the least square fits performed for this work which had satisfac-

tory residuals. It is worth noting that for these spectra, the best fit rotational temperature

depends strongly on the line-shape function used to convolve the model, this is because the

effect of lowering the rotational temperature results in changes to spectra which are similar

to the changes caused by increasing the line-widths. Therefore, it is possible the changes

in the spectra in figure 27 reflect a dynamic rotational temperature, though at the current

time only satisfactory residuals are obtained by changing the line-shape. A calibration of

the instrument line-shape using a mercury-argon lamp seemed to rule out any systematic

or instrument based explanations for any increase or decrease in line-width along the spec-

trograph’s vertical axis. One possible explanation is that the spectroscopic imaging system

is not viewing the flow in an entirely perpendicular fashion and therefore the change in

line-shape is due to velocity broadening. This seems unlikely, but could arise if the flow

was turbulent.
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Figure 27. ∆V=2 spectrum of the N2(C−B) for three different axial positions: (a) at the throat, (b) at
the emission minimum after the exit and (c) far downstream.
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5.3 Estimation of Plasma Parameters

If as in chapter IV both the argon line and the N2(C−B),v′→ v′′ = 0→ 2 band can

be approximated using the corona model, their ratio can be used to estimate the electron

temperature and associated EEDF. In that approximation, the ratio can be expressed as

ISPS (v′,v′′)
I750(Ar)

=
PSPS (v′,v′′)

P750

[
nN2k(X−C)

e

nArk
4p′
e

]
. (46)

In this case the only unknown in equation 46 above is the EEDF used to calculation the

excitation rate, and a similar procedure as used in section 4.4 can be used to determine a

best fit EEDF. The ratio, ISPS (0,2)/I750, as taken from the intensities in figure 26, remains

near approximately 10, though they are dynamic and tend to decrease from approximately

13 to 8.5, from 0 to 7 mm. These two ratios, 13 and 8.5, correspond to electron temperatures

of 2.8 and 3.8 eV, respectively and suggest that the EEDF heats in the region just beyond

the nozzle and settles near 3.75 eV after approximately 7 mm. This conclusion is however

questionable for the many reasons, as discussed below.

It should be strongly noted, that this general procedure, of determining electron tem-

perature using the corona model approximation of the N2(C3Πu) and Argon 4p′ 2 [1/2
]

0is

potentially problematic for several reasons including the potential influence of metasta-

bles on both states by both stepwise excitation and the metastable pooling reaction for

N2(C3Πu) production, as well as collisional quenching. The applicability of the method

described above strongly depends on the densities of these metastables and its viability de-

pends on electron density, electron temperature and neutral number density, all of which

are difficult to determine in this dynamic flow. In the case of N2(C3Πu) in a stationary

microwave discharge containing highly dissociated O2 the argument has been made by

Steves et al. [47] that collisional quenching of the N2(A3Σ+
u ) metastable by atomic oxygen

makes stepwise excitation of N2(C3Πu) from N2(A3Σ+
u ) negligible, though no statement
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regarding the commonly considered pooling reaction [40] was discussed. Additionally,

N2(C3Πu),v = 0 can be strongly produced by argon metastables [109]. Though this is not

expected as in chapter IV the addition of a 5% total gas fraction of argon had a negligi-

ble influence on the N2 spectra. The corona approximation (including quenching) for the

N2(C3Πu),v = 0, as used in the N2/N+
2 ratio technique in chapter IV is considered for this

work a reasonable approximation (due to the above argument made by Steves et al. [47]),

though it may contain some error associated with the N2(A3Σ+
u ) metastable pooling reac-

tion. However, in the case of the supersonic flow, the dynamic nature and unknown gas

and plasma parameters make that extension questionable. Thus the electron temperature

results discussed above could reflect changes in metastable densities as a result of reduced

collisions in the supersonic flow rather than actual modifications of the EEDF. Indeed in the

same region the ISPS (0,2)/I750 ratio is dynamic a change in the vibrational distribution of

N2(C3Πu) is evident, with more density in higher vibrational states downstream. Despite

this, they provide reasonable electron temperatures with an average of approximate 3.3 eV,

though they are hotter than the results in chapter IV, which were closer to 2.5 eV, this is a

reasonable outcome as those results were obtained outside the cavity where weaker electric

fields are reasonably expected.

If it is assumed that the temperatures calculated above using the ISPS (0,2)/I750 ratio

are a reasonable approximation, equation 43 can be used to estimate ionization fraction if

rearranged as follows:

ne

N
≈ k

5S
e k

5P
em

k5S
q

[
I777(O)

I844(O)

P844

P777
k

3P
e − k

5P
e

]
. (47)

The line ratio, as given in figure 25 has a value of 1.05 at the throat exit and decreases

to 0.9 near 7 mm. Using the electron temperature calculated above at those same locations,

equation 47 yields dissociation fractions of ne/N = 1.75× 10−4 at z=0 mm and ne/N =

1.4× 10−4 at z = 7 mm. Equation 47 is not significantly sensitive to changes in electron
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temperature for temperatures greater than approximately 2 eV, with the measured ionization

fraction only decreasing by about 8% from 2 eV to 3 eV, therefore the electron procedure

conducted would not significantly alter these results unless the actual temperatures were

less than 2 eV. In any case, the estimation of electron temperature should be considered

here as a potentially significant but necessary approximation in order to demonstrate the

utility of the imaged 777 nm / 844 nm results and their relationship to equation 47, which

is much less questionable based on the significant study conducted regarding the kinetics

of those two lines in chapters III and IV.

5.4 Discussion

A supersonic microwave discharge was developed and operated at pressure ratios which

corresponds to a Mach numbers ranging from 2.15 to 2.75. The variability of the Mach

number is attributed to the modification of the flow by the discharge, such as by variable

boundary layer thickness. Though the variability should be caused by variations in ratio

of specific heat, k, as its value depends on the gas temperature and composition, the latter

is likely dynamic due to varying degrees of dissociation. Nearly all spectra were at a

maximum intensity at the throat exit and decayed rapidly until approximately 7 mm where

an inflection point occurred. This likely indicates the location of the shock and is on the

order of the approximation provided by the empirical formula from [53], which predicts

a shock location of 10 mm. Rotational temperatures measured from the N2(C−B) here

were near 1500 K and higher than the downstream temperatures measured by Drake et

al. [20], wherein a similar supersonic microwave discharge flow was created. The rotational

temperatures in that work was measured to be approximately 1150 K at a microwave power

near 525 W, though in the case of Drake et al. [20] the gas mixture was dominantly argon

with an approximately 5% and 9% admixture of H2 and air, respectively.

With regard to the estimation of plasma parameters in section 5.3, two approximations
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were made relative to the kinetic situation previously described in chapter IV, in order to

reduce the ratio of the 777 nm / 844 nm into an analytical form useful for determining

ionization fraction. First, dissociative excitation was neglected based on the low branching

of that route (< 10%) found for all EEDFs considered in chapter IV. Second, collisional

quenching is ignored, which is an approximation made out of necessity due to the unknown

local gas densities and temperatures. However, because the 777 nm and 844 nm lines have

similar quenching rates for known values, the effect of including quenching on their ratio

is small and less than our spectral calibration error. For example, including quenching at a

pressure of 1 Torr and a temperature of 300 K only changes the ratio P844/P777 by 3%, thus

ignoring quenching is a reasonable approximation for this ratio. The situation is very sim-

ilar for quenching and the ISPS (0,2)/I750 ratio, where inclusion of quenching at the same

pressure and temperature changes the ratio of lifetimes by 4%. The other principal approx-

imation made for calculation of electron temperatures use the N2 / argon ratio was that

electron excitation from the ground state is the dominant populating mechanism for both

states, the questionable nature of this approximation was discussed in detail in section 5.3

above. Based on a these approximations, two simplified analytical equations were used to

estimate electron temperature and ionization fraction for two locations. An average electron

temperature of 3.3 eV was estimated along the flow and ionization fraction was estimated

to be ne/N = 1.75× 10−4 near the throat (z=0 mm) and ne/N = 1.4× 10−4 downstream

near the emission minimum (z=7 mm). For comparison, Kolesnichenko et al. [60] mea-

sured an electron density and gas temperature in a supersonic flow microwave discharge

which corresponded to an ionization fraction of approximately 1.5× 10−5, though in the

case of [60] microwave power was both significantly higher and pulsed for short durations

(up to 2 µs). Additionally, in general, for high frequency discharges such as the microwave

discharge used here are characterized by ionization fractions greater than approximately

10−5 [40]. In the subsonic case in chapter IV, the ionization fraction was measured to
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be ne/N = 1.4× 10−4 which agrees well with values for the supersonic flow, which is

somewhat expected as the value was measured using a very similar, though slightly more

complete approach. In general ionization fraction is considered to be frozen in supersonic

flows, as recombination is typically negligible in the expanded flow [107]. This is counter

to what was estimated here in which a decrease of around 20% in ionization fraction was

observed. It is not clear though, if this situation applies to flows in which energy is de-

posited in the supersonic region, as is the case here. One reasonable interpretation of the

results is that the decrease in 777 nm / 844 nm reflects both a decrease in ionization frac-

tion and electron temperature, since a decrease in electron temperature would decrease the

electron-neutral collision frequency and subsequently the ionization rate. In this case the

disagreement of this interpretation with the ISPS (0,2)/I750 ratio results could simply be

seen as a divergence of the actual kinetic situation from the corona model in the supersonic

flowing discharge for the reasons discussed in section 5.3 above. It is also possible that

some of the changes of the 777 nm / 844 nm line ratio are indeed caused by changes in

dissociation fraction, though for this to be a significant factor, it would require the actual

dissociation fraction to be significantly lower than it was measured in chapter IV. In any

case, the 777 nm / 844 nm imaging technique provides a reasonable estimate of ionization

fraction and if properly validated could be extremely powerful for high temporal and spa-

tial imaging of ionization fraction in highly dissociated plasma flows, though it remains to

be proven that the ratio is indeed correlated to electron density.
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VI. Conclusions

A 96-level collisional radiative model for atomic oxygen has been developed in order

to test the validity of commonly used basic models for the 777 nm/ 844 nm line ratio. The

model includes a relatively complete set of quenching or heavy particle collisional relax-

ation rates for a variety of common gas species for the first 6 excited states, dissociative

excitation rates for the lowest 7 states, electron impact excitation rates for 96 excited states

from the ground state and a complete electron impact excitation rate matrix for the low-

est 7 states. Rates for electron processes are calculated using electron energy distribution

functions calculated by BOLSIG [11] and using cross sections primarily from Laher and

Gilmore [7], Barkelm [18] and Schulman et al. [64]. Computed line ratios are compared

to both the basic model in literature which considers radiation, quenching, electron impact

excitation from the ground state and dissociative excitation as well as the same basic model

with the inclusion of a cascade emission populating rate. Comparisons are made for both

a synthetic air mixture and an O2/Ar mixture for a variety of oxygen dissociation fractions

and gas pressures. It was determined that 3 factors account for the discrepancy between

the collisional radiative model results and the basic model (1) metastable excitation, (2)

cascade radiation, and (3) collisional quenching from 3p 3P to 3p 5P. Metastable excita-

tion becomes dominant at low pressures for both gas mixtures and at low temperatures

in the case of the O2/Ar mixture. For all other situations cascade emission and collisional

quenching from 3p 3P to 3p 5P account for nearly all disagreement between the 96 level col-

lisional model and the basic model. At the present time, there is no simple way to include

the effects of metastable excitation or collisional quenching from 3p 3P to 3p 5P without

estimates of metastable densities and the density of the 3p 3P state. Though the ground

state and the 1D and 1S may be well approximated by a Saha equilibrium [61], higher lying

states such as the 3s 5S◦ state, which at low pressures can significantly populate the 3p 5P

state, exist in the active region which require a collisional-radiative model to accurately
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estimate. However, inclusion of a cascade radiation rate, using the cross section calculated

in this work and based on the electron impact excitation cross sections from Laher and

Gilmore [7], does not over-complicate the basic model and can be implemented without

additional knowledge. Additionally, inclusion of the cascade rate improves agreement with

the collisional radiative model for all cases and in the case of a medium pressure air plasma

it provides excellent agreement.

Finally, with regard to the CRM results, it was found that the 777 nm/ 844 nm line ratio

has the most utility as an electron temperature or EEDF diagnostic at medium and high

pressures (1-760 Torr) and for low dissociation fractions (< 10%). Outside of this param-

eter space the line ratio is either not sensitive to moderate changes in electron temperature

or too difficult to compute due to metastable excitation.

In the subsonic experimental investigation, strong evidence was provided that metastable

excitation (3s 5S◦→ 3p 5P) is an important mechanism for accurately modeling the relative

777 nm oxygen line intensity in medium pressure microwave N2/O2 discharges and the ad-

dition of this mechanism introduces an electron density dependence to the 777 nm / 750 nm

actinometry ratio which can be exploited along with other techniques to extract estimates

of electron density. The additional mechanism is most important for low pressures and

high electron densities as it depends the product of O(3s 5S◦) and electron densities. This

technique is enhanced by the fact that the extended corona model, which includes direct

electron impact excitation from the ground state, cascade electron impact excitation and

dissociative excitation can be extended to the 3s 5S◦ metastable for the conditions observed

here and shows excellent agreement with a relatively complete collisional radiative model,

thus allowing for experimental determinations of electron and metastable 3s 5S◦ densities

using analytical solutions. On the basis of these conclusions, a combined technique which

uses 2 oxygen / argon actinometry ratios (844 nm / 750 nm and 777 nm / 750 nm) with

a corrected excitation scheme for the 3p 5P state along with the N2/N+
2 method has been
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developed which can be used to simultaneously determine dissociation fraction, effective

electron temperature, metastable 3s 5S◦ density and an estimate of electron density. This

combined actinometry technique however does require the three conditions (in addition

to any general oxygen/argon actinometry requirements) for applicability: 1) metastable

3s 5S◦ density is sufficiently high such that metastable excitation is significant for the 777

nm line, 2) collisional de-excitation is dominant loss mechanism for 3s 5S◦ and 3) it is

possible to resolve between the two possible solutions to electron temperature. This com-

bined actinometry technique was shown to produce dissociation fractions, effective electron

temperatures and electron densities reasonably consistent with those found in similar dis-

charges in literature and O(3s 5S◦) densities consistent with values predicted by a relatively

complete collisional radiative model. In the case of the 4d 5D◦ state, the lack of avail-

able quenching and metastable excitation rates make comparison of experimental results

somewhat inconclusive, though results indicate that the 616 nm / 750 nm actinometry ratio

is correlated to atomic oxygen density and when quenching is ignored the ratio produced

dissociation fractions which nearly agreed with the more trustworthy 844 nm technique.

These results indicate that the 616 nm line shows promise as an additional OES line and

thus measurement of quenching rates for air collisional partners along with some estimation

of metastable excitation for the 4d 5D◦ state is strongly suggested for future work.

With regard to the final experiments conducted in chapter V, a supersonic flowing mi-

crowave discharge was achieved using a quartz de Laval nozzle and a high power 2.54 GHz

magnetron. The resulting discharge was analyzed with a number of spectroscopic tools

from within the waveguide cavity. Based on the results of chapters III and IV, a simple

relationship between the common 777 nm / 844 nm and ionization fraction was developed

and the ratio itself was imaged using narrow band interference filters to produce spatially

resolved images which can be seen as a qualitative examination of the spatial dependence

of ionization fraction. Ionization fraction was estimated near ne/N = 1.75× 10−4 at the
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throat exit and ne/N = 1.4×10−4 at a position 7 mm downstream. If local EEDFs and gas

densities are determined, this image can be converted to an approximate map of electron

density, though further validation of the spectroscopic model and required assumptions are

required.

Finally, with regard to the general utility and accuracy of OES diagnostic techniques,

such as the ones developed here and similar approaches, they certainly carry significant

benefits over other techniques including their non-invasive, experimentally simple to apply

approaches, as well as their high spatial and temporal resolution afforded by imaging meth-

ods. However, the primary trade-off is accuracy which depends strongly on the accuracy

of cross sections, EEDFs, quenching coefficients and other spectroscopic data. In the case

of cross sections, significant uncertainties exist and are evident by the variety of different

cross sections for the same process from different authors. Similarly, modeling of EEDFs

using BOLSIG and other Boltzmann solvers rely on the accuracy of these cross sections

as well as other input parameters such as gas composition and densities of excited neutrals

and ions as well as the overall validity of the two-term approximation. In addition to this,

OES requires that the spectroscopic models be a good approximation of the kinetic situa-

tion and are not missing any non-negligible processes. For these reasons, OES applications

typically require in-situ validation specific to their application in order to provide accurate

results. In other cases, such as the OES results for electron densities, metastable densities

and electron temperatures performed here, which have been not been verified with other

diagnostics, results should be treated as somewhat qualitative in nature. Thus validation of

the techniques presented here with more trustworthy and robust diagnostics is a necessary

future step. However, this trade off in terms of accuracy can be worth the powerful nature

of imaging techniques such as those used in chapter V which can capture plasma charac-

teristics with high temporal and spatial resolution with a relatively simple an inexpensive

acquisition setup. Thus, the optimal utility of these diagnostics exists in situations where
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validation or calibration of accuracy is possible and situations which require high spatial

and temporal resolution, simple experimental application, and non-invasive probing.
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Appendix A: Cascade emission cross sections.

Cascade emission cross sections used in this work are given in table 9 below. These

cross sections capture the excitation resulting from direct electron excitation to higher lying

states and were calculated using the direct cross sections from Laher and Gilmore [7] and

the recursive equations in chapter III, where a complete description is available.

Table 9. Cascade cross sections for important atomic oxygen states derived from the cross sections
of [7]. Values for each are given in 10−18 cm−2.

Energy (eV) 3s 5S◦ 3p 5P 3p 3P 4d 5D◦

11.2 0.465 - - -
11.4 0.855 - - -
11.6 1.062 - - -
11.8 1.186 - - -
12.0 1.329 0.020 - -
12.2 1.460 0.050 0.050 -
12.4 1.600 0.090 0.106 -
12.6 2.266 0.610 0.148 -
12.8 2.498 0.738 0.175 -
13.4 3.123 1.054 0.347 0.035
13.6 3.340 1.167 0.415 0.055
13.8 3.548 1.273 0.482 0.066
14 3.781 1.406 0.707 0.074
16 4.379 1.952 1.084 0.136
18 4.442 2.133 1.307 0.143
20 4.331 2.153 1.459 0.136
22 3.972 2.039 1.546 0.128
25 3.149 1.696 1.561 0.107
28 2.205 1.284 1.566 0.074
30 1.765 1.061 1.583 0.055
35 1.120 0.679 1.616 0.032
40 0.745 0.451 1.639 0.021
45 0.539 0.328 1.646 0.014
50 0.378 0.231 1.643 0.010
55 0.294 0.179 1.576 0.007
60 0.221 0.137 1.499 0.006
70 0.132 0.080 1.296 0.003

100 0.063 0.043 0.837 0.001
150 0.015 0.009 0.695 0.000
200 0.006 0.004 0.585 0.000
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